
 

 

 

 

 

C Language Programming 
 

For 8 Series Mobile Computers 
  
 
 

 DOC Version 3.16 
 



 

Copyright © 2007~2010 CIPHERLAB CO., LTD. 
All rights reserved 

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided 
under a license agreement containing restrictions on use and disclosure and is also 
protected by copyright law.  Reverse engineering of the software is prohibited. 

Due to continued product development this information may change without notice.  The 
information and intellectual property contained herein is confidential between CIPHERLAB 
and the client and remains the exclusive property of CIPHERLAB CO., LTD.  If you find 
any problems in the documentation, please report them to us in writing.  CIPHERLAB 
does not warrant that this document is error-free. 

No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronic, mechanical, photocopying, 
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD. 

For product consultancy and technical support, please contact your local sales 
representative. Also, you may visit our web site for more information. 

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.  

All brand, product and service, and trademark names are the property of their registered 
owners. 

The editorial use of these names is for identification as well as to the benefit of the 
owners, with no intention of infringement. 

 

 

 

CIPHERLAB CO., LTD. 
Website: http://www.cipherlab.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.cipherlab.com/


Version  Date Notes 

3.16 Oct. 04, 2010  Modified: 1.1.1 Directory Structure — add support of Windows 
Vista and Windows 7, etc. 

 Modified: 1.2.3 Link — add support of Windows Vista and Windows 
7 

3.15 Aug. 26, 2010  Modified: 2.1.6 Program Manager — UpdateBank(), UpdateUser(), 
add UpdateKernel() support both .shx and .bin 

 Modified: 2.2.2 Code Type — add “63 (?)” for Coop 25 (CCD/Laser, 
8400) 

 Modified: 2.15.7 DBF Files and IDX Files — add UnpackDBF() for 
8000, 8300, 8400 

 Modified: 2.18.7 RADIOSTATUS Structure (802.11b/g) for 
8000/8300/8400 only 

 Modified: 2.24.2 Directory — update table 

 Modified: 5 Simulator — remove 

 Modified: Appendix I, II Symbology Parameters — add support for 
Coop 25 (CCD/Laser, 8400) 

 Modified: Appendix I, III — 8400 2D scan engine (Bit 0 of Byte 40) 

3.14 May 24, 2010  Modified: 2.10.1 General — remove peek_kb() 

 Modified: 2.15.7 DBF Files and IDX Files — update_member 

3.13 Apr. 29, 2010  Modified: 2.1.8 Menu Design — prc_menu(); add 
GetMenuPauseTime() and SetMenuPauseTime() 

 Modified: 2.2.2 Code Type — add “63 (?)” for Coop 25 (CCD/Laser, 
8000, 8300 only); add support for Code 11 (Long Range, 8300 
only) 

 Modified: 2.11.3 Display — ICON_ZONE (160x16 for 8400 
regardless of font size) 

 Modified: 2.13.2 Display Capability — Icon Zone is 160x16 for 8400 
regardless of font size 

 Modified: 2.13.5 Font Files — update font size for 8400  

 Modified: 2.14.1 Flash — add reserved banks for 8400 

 Modified: 2.18.3 Network Status — add RADIOSTATUS  

 Modified: 2.18.6 NETSTATUS Structure (802.11b/g) 

 New: 2.18.7 RADIOSTATUS Structure (802.11b/g) 

 Modified: Appendix I, II — add support for Coop 25 (CCD/Laser, 
8000, 8300 only); add support for Code 11 (Long Range, 8300 
only) 

 Modified: Appendix I, II — UPC/EAN Addon 2 & 5 disabled by 
default (2D, (Extra) Long Range) 

 Modified: Appendix VI Net Status by Index — add RADIOSTATUS 

 Modified: Appendix VII Examples — supports Turkish for Bluetooth 
HID, USB HID 

RELEASE NOTES 



 

3.12 Feb. 09, 2010  Modified: Appendix I ~ II — 8500 LR/ELR scan engine (Bit 5 of 
Byte 25; Bit 3 of Byte 42) 

 Modified: Appendix I ~ III — 8500 LR/ELR/2D scan engine (Bit 7-4 
of Byte 20; Bit 5 of Byte 25; Bit 7-0 of Byte 38; Bit 5-4 of Byte 40; 
Bit 3, 1-0 of Byte 42) 

3.11 Dec. 29, 2009  Modified: 2.22 Modem, Ethernet & GPRS Connection — support 
8400 GPRS Cradle, Transparent Mode 

 Modified: Appendix I ~ III — 8400 2D scan engine (Bit 7-4 of Byte 
20; Bit 5 of Byte 25; Bit 1-0 of Byte 42) 

3.10 Nov. 24, 2009  Modified: 2.2.2 Code Type — 121 (Chinese 25); 126 (Coupon 
Code) 

 Modified: 2.14.3 SD Card — fsize() 

 Modified: 2.24.7 Error Code — updated 

 Updated: Appendix I, II – Symbology Parameter Table II (more 
parameters for Matrix 25) 

3.09 Aug. 24, 2009  Modified: 2.15 File Manipulation — get_file_number() 

 Modified: 2.15.8 File Transfer via SD Card — RAMtoSD_DAT(), 
SDtoRAM_DAT() 

 Modified: 2.24.5 SD Card Manipulation — fscan(), ftruncate() 

 Modified: 2.24.7 Error Code  

 Modified: Appendix I ~ III — support 8400 2D scan engine 

3.08 July 29, 2009  Re-arrange chapters 2.14 ~ 2.23; remove 711; support 8400 

 Modified: 2.1.1 (System) General — CheckWakeUp(), add 
GetIOPinStatus() for 8400 

 Modified: 2.1.3 System Global Variables — add SYSTEM_BEEP[] 

 Modified: 2.1.4 System Information — add PPPVersion() 

 Modified: 2.1.6 Program Manager — 
ActivateProgram(),DeleteBank(), LoadProgram(), ProgramInfo(), 
UpdateBank(), UpdateUser(), add UpdateKernel() 

 Modified: 2.1.7 Download Mode — DownLoadPage() 

 Modified: 2.1.8 Menu Design — prc_menu() and SMENU 

 Modified: 2.5 Buzzer — add get_beeper_vol(), set_beeper_vol() for 
8400 

 Modified: 2.6 LED Indicator — set_led() for 8400 

 Modified: 2.9 Battery & Charging — (2.9.2) charger_status(); add 
GetUSBChargeCurrent(), SetUSBChargeCurrent() for 8400 

 Modified: 2.10.2 (Keypad) ALPHA Key — add return value -1 for 
get_alpha_enable_state(), get_alpha_lock_state() 

 Modified: 2.10.3 (Keypad) SHIFT Key — add return value -1 for 
get_shift_lock_state() 

 Modified: 2.10.4 (Keypad) ALT Key — add return value -1 for 
GetAltKeyState() 

 Modified: 2.10.5 (Keypad) FN Key — add GetFuncExtKey(), 
SetFuncExtKey() for 8400 

 Modified: 2.11.1 (LCD) Properties — lcd_backlit(), SetBklitControl() 
for 8400 

 New: 2.14.3 SD Card — ffreebyte(), fsize() for 8400 

 New: 2.15.8 File Transfer via SD Card 



   Modified: 2.16 COM Ports — SetCommType() 

 Modified: 2.18.5 NETCONFIG Structure (802.11b/g) – update 
tables regarding Wi-Fi security  

 Modified: 2.19 Bluetooth — external library required for DUN-GPRS 
mode 

 Modified: 2.21 Miscellaneous — moved to 2.1.7 and 2.1.8 

 New: 2.23 USB Connection — for 8400 

 New: 2.24 SD Card — for 8400 

 Modified: Appendix V — Net Parameters by Index: Index 39 for 
WPA2_PSK 

3.07.10 Dec. 29, 2008  Modified: 2.10.1 General — GetKBDModifierStatus() 

 Modified: 2.10.3 SHIFT Key — set_shift_lock() 

 Modified: 2.10.4 ALT Key — SetAltKey() 

 Modified: 2.10.5 FN Key — refine description of each value for 
SetFuncToggle() 

 Modified: 2.11.1 Properties — SetContrastControl() supports FN + 
[3]/[6] on 8500 44-TE keypad 

 Modified: 2.15.2 File Transfer Protocol (FTP) — removed for 
standard library does not support FTP 

 Modified: 2.16.2 Network Configuration — iRoamingTxLimit_11b 
and iRoamingTxLimit_11g for Wi-Fi roaming only work with 
“customized” system scale 

 Modified: 2.21 Miscellaneous — prc_menu() sample code 

3.07.09 Oct. 29, 2008  Modified: 2.1.4 System Information – KeypadLayout() supports 
8500 44-key Type II 

 Modified: 2.10.5 FN Key – SetFuncToggle() supports new keypad of 
8500 

 Modified: 2.16.2 Network Configuration – new parameters for Wi-Fi 
roaming 

 Modified: 2.18 GSM/GPRS – Illustration of PIN/PUK procedure 
updated 

3.07.08 July 23, 2008  Modified: 2.19 RF Communications – remove the whole section due 
to termination of product 8310, 8350 

3.07.07 Jun. 05, 2008  Modified: 2.16.2 Network Configuration – add FixedBSSID[6] to 
NETCONFIG structure 

 Modified: 2.19 RF Communications – remove 8110, 8150 

3.07.06 Apr. 15, 2008  Modified: remove 8100 

 Modified: 2.11.6 Graphics – 8000/8300 support graphic functions 

 New: 2.16.2 Network Configuration – Net Parameter Index 36 to 
get/set Fixed BSSID for WLAN 

 Modified: 2.21 Memory – Information updated 

 New: Appendix I – Symbology Parameter Table I: ISBT 128 (Bit 4 
of Byte 22) 

3.07.05 Mar. 13, 2008  Modified: Appendix IV Cradle Commands – firmware version issue 
for #fOrMaT:x and #SeRiAl 

3.07.04 Jan. 11, 2008  New: 2.14.4 Acoustic Coupler for 8300 Series 

 New: FTP Functions – re-organize sections 2.15 ~ 

 Modified: GetNetStatus(GSM_RSSIQuality) supports GPRS 



 

3.07.03 Dec. 05, 2007  New: GSMModemGetRSSI() 

 New: Net Parameter Index 35 to get BSSID for WLAN 

3.07.02 Nov. 06, 2007  New: 5.5.1 Configure the Simulator – Language setting, View Flash 
Memory 

 New: 5.7 Platform Issues (regarding simulation) 

3.07.01 Oct. 26, 2007  Modified: Appendix IV – Cradle Command #sBaUd1200 removed  

3.07.00 Aug. 09, 2007 New Word template applied 

 New: 2.17.2 GPRS Flag Structure (for Challenge Handshake 
Authentication Protocol) 

 New: Appendix IV – Cradle Command #fOrMat:x 

3.06.00 May 11, 2007  New: Chapter 6 Simulator 

 Modified: 3.17.1 – Bluetooth & 802.11b/g specifications 

3.05.19 Apr. 09, 2007  New: 3.17.2 – WPA-related parameters in NETCONFIG, 
WLAN_FLAG structures and NetParameters by Index 

 New: Appendix I – Symbology Parameter Table I: UPC-E1 Triple 
Check (Bit 1 of Byte 11) 

3.05.18 Mar. 03, 2007  New: 3.3 Tag SR176 is supported 

 Modified: 3.15.1 & 3.17.2 PPP LoginName[20] changed to 
LoginName[39] 

 New: Appendix IV – Cradle Commands 

3.05.17 Sep. 15, 2006  New: Macro PDF417 supported 

 Updated: 3.2.2 Code Type – Symbology Mapping Table II 

 Updated: Appendix I – Symbology Parameter Table II 

3.05.16 Aug. 14, 2006  Modified: DeviceType() for 8300 

 Mofified: 3.3 RFID supported on 8300 

 Modified: 3.15.1 8330 external library – 83NetCombo.lib 

3.05.15 Aug. 09, 2006  Modified: NetInit() – 0L~6L for “mode” parameter 

 Modified: 3.1.4 – DeviceType() for 8300 H/W 4.0 

 Modified: GetVibrator(), SetVibrator() for 8300 H/W 4.0 

 Modified: ProgVersion[16] – const char 

 Modified: UpdateUser()  

 New: 3.1.4 – RFIDVersion() 

 Modified: 3.3 RFID Reader  

 New: GetRFIDSecurityKey(), SetRFIDSecurityKey() 

 New: 3.15 IR/RS-232 Networking to include PPP/Ethernet 
connection 

 Modified: NetInit(IR_MODE_NETWORKING) 

3.05.14 June 07, 2006  Modified: ConfigureReader() for 8300 with Long Range Laser scan 
engine 

3.05.13 June 06, 2006  Modified: lcd_backlit() 

 Modified: Appendix II 

3.05.12 May 17, 2006  Modified: 3.4 Keyboard Wedge, SendData(), WedgeReady() 

 Modified: original 3.17 has been merged to 3.16 

 Modified: 3.16.6 ... Bluetooth Examples – Wedge Emulator via SPP 



3.05.11 May 11, 2006  Modified: nwrite_com() 

 Modified: GetVibrator(), SetVibrator() for 8300, H/W version is 4 

3.05.10 Mar. 15, 2006  New: OrgCodeType for CCD, Laser scan engine 

 New: support Bluetooth HID on 8000 

3.05.00 Feb. 09, 2006  Modified: DownLoadPage() already exists in 3.20; removed from 
3.1.1 

 Modified: ChangeSpeed() for 711/8100/8000/8300 only 

 Modified: IrDA_Timeout() for 711/8000/8300/8500 only 

 Modified: Play() for 8000/8300/8500 only 

 Modified: LockAlphaState() for 8000/8300/8500 only 

 Modified: lcd_backlit(BKLIT_LO) = backlight on 

 Modified: charger_status() for 8000/8300/8500 only  

 Modified: “PPP via IR” default baud rate for modem cradle is 57600 

 New: Customize Serial Number  

 Updated: SetACTone() for 8000 only 

 Modified: SHIFT/ALT/FN key functions  

 Modified: coordinate system of LCD 

 Modified: lcd_backlit() with level 0 ~ 4 for 8500 

 Modified: font files renamed for 8000/8300 

 Modified: port mapping 

 Modified: open_com() with CRADLE_COMMAND for 
8000/8300/8500 

 Modified: open_com() with Acoustic Settings for 8000 

 Modified: SetCommType() add 6 Acoustic/GSM_Modem 

 Modified: support 2 MB flash on 8000/8500 

 Modified: GSM read data format 

 Modified: SetPwrKey() for 8300, 8500 

 Modified: AUTO_OFF 

 New: DeleteBank() for 8300 only 

 New: ConfigureReader() for 8500 only 

 Updated: ScannerDesTbl, Byte 0-22 

 New: ScannerDesTbl, Byte 23-38 

 New: GetHeaterMode() for 8500 only  

 New: SetHeaterMode() for 8500 only  

 New: GetKBDModifierStatus() 

 Modified: DecContrast(), GetContrast(), IncContrast(), 
SetContrast() for 8500 

 New: SetBklitControl() for 8500 only 

 New: SetContrastControl() 

 Modified: prc_menu() 

 Modified: RFID to provide example 

 Modified: ScannerDesTbl, Byte 25, 37 ~ 39 

 New: Appendix I – ScannerDesTbl  

 New: Appendix II – Symbology Parameters 



 

   New: Appendix III – Scanner Parameters 

3.04.00 Nov. 30, 2005  New: Bluetooth DUN-GPRS 

 New: PPP via IR/RS-232 

 Modified: COM port mapping, SetCommType(), NetInit() 

 Modified: Wireless Practice 

 Updated: Indexing for Net Configuration and Net Status 

3.03.00 Oct. 21, 2005 Updated version in new format for doc and html help. 

 

 



 

 

CONTENTS 

RELEASE NOTES .............................................................................................................................. - 3 - 

INTRODUCTION.................................................................................................................................... 1 

DEVELOPMENT ENVIRONMENT .......................................................................................................... 3 
1.1 Directory Structure & Variables ................................................................................................. 3 

1.1.1 Directory Structure ............................................................................................................. 3 
1.1.2 Environment Variables....................................................................................................... 5 

1.2 Development Flow ...................................................................................................................... 6 
1.2.1 Create Your Own C Source Program ................................................................................. 7 
1.2.2 Compile............................................................................................................................... 7 
1.2.3 Link...................................................................................................................................... 8 
1.2.4 Format Conversion...........................................................................................................10 
1.2.5 Download Program to Flash Memory..............................................................................11 

1.3 C Compiler.................................................................................................................................12 
1.3.1 Size of Types.....................................................................................................................12 
1.3.2 Representation Range of Integers ..................................................................................12 
1.3.3 Floating Types...................................................................................................................13 
1.3.4 Alignment..........................................................................................................................13 
1.3.5 Register and Interrupt Handling......................................................................................13 
1.3.6 Reserved Words ...............................................................................................................13 
1.3.7 Extended Reserved Words ..............................................................................................14 
1.3.8 Bit-Field Usage..................................................................................................................14 

MOBILE-SPECIFIC FUNCTION LIBRARY .............................................................................................17 
2.1 System.......................................................................................................................................18 

2.1.1 General .............................................................................................................................18 
2.1.2 Power On Reset (POR) .....................................................................................................21 
2.1.3 System Global Variables ..................................................................................................22 
2.1.4 System Information..........................................................................................................25 
2.1.5 Security .............................................................................................................................30 
2.1.6 Program Manager ............................................................................................................32 
2.1.7 Download Mode ...............................................................................................................40 
2.1.8 Menu Design ....................................................................................................................41 

2.2 Barcode Reader........................................................................................................................45 
2.2.1 Barcode Decoding............................................................................................................45 
2.2.2 Code Type .........................................................................................................................48 
2.2.3 Scanner Description Table ..............................................................................................52 

2.3 RFID Reader..............................................................................................................................53 
2.3.1 Virtual COM.......................................................................................................................54 
2.3.2 RFIDParameter Structure ................................................................................................54 
2.3.3 RFID Data Format ............................................................................................................55 
2.3.4 RFID Authentication .........................................................................................................56 

2.4 Keyboard Wedge ......................................................................................................................58 
2.4.1 Definition of the WedgeSetting Array..............................................................................59 
2.4.2 Composition of Output String ..........................................................................................62 
2.4.3 Wedge Emulator...............................................................................................................63 



 

CipherLab C Programming Guide 

 

2.5 Buzzer........................................................................................................................................64 
2.5.1 Beep Sequence ................................................................................................................64 
2.5.2 Beep Frequency ...............................................................................................................64 
2.5.3 Beep Duration ..................................................................................................................64 

2.6 LED Indicator ............................................................................................................................67 
2.7 Vibrator & Heater......................................................................................................................68 

2.7.1 Vibrator .............................................................................................................................68 
2.7.2 Heater ...............................................................................................................................69 

2.8 Real-Time Clock ........................................................................................................................70 
2.8.1 Calendar ...........................................................................................................................70 
2.8.2 Alarm.................................................................................................................................72 

2.9 Battery & Charging ...................................................................................................................73 
2.9.1 Battery Voltage .................................................................................................................73 
2.9.2 Charging Status................................................................................................................74 

2.10 Keypad ....................................................................................................................................76 
2.10.1 General ...........................................................................................................................76 
2.10.2 ALPHA Key ......................................................................................................................80 
2.10.3 SHIFT Key .......................................................................................................................83 
2.10.4 ALT Key ...........................................................................................................................84 
2.10.5 FN Key ............................................................................................................................85 

2.11 LCD..........................................................................................................................................88 
2.11.1 Properties .......................................................................................................................88 
2.11.2 Cursor .............................................................................................................................93 
2.11.3 Display ............................................................................................................................95 
2.11.4 Clear ...............................................................................................................................99 
2.11.5 Image............................................................................................................................101 
2.11.6 Graphics .......................................................................................................................103 

2.12 Touch Screen........................................................................................................................106 
2.12.1 ItemProperty Structure ................................................................................................106 
2.12.2 Example........................................................................................................................109 

2.13 Fonts .....................................................................................................................................110 
2.13.1 Font Size.......................................................................................................................110 
2.13.2 Display Capability.........................................................................................................110 
2.13.3 Multi-Language Font....................................................................................................111 
2.13.4 Special Fonts................................................................................................................111 
2.13.5 Font Files ......................................................................................................................114 

2.14 Memory .................................................................................................................................116 
2.14.1 Flash .............................................................................................................................116 
2.14.2 SRAM ............................................................................................................................118 
2.14.3 SD Card ........................................................................................................................119 

2.15 File Manipulation..................................................................................................................120 
2.15.1 File System...................................................................................................................120 
2.15.2 Directory .......................................................................................................................120 
2.15.3 File Name .....................................................................................................................120 
2.15.4 File Handle (File Descriptor)........................................................................................121 
2.15.5 Error Code ....................................................................................................................121 
2.15.6 DAT Files.......................................................................................................................125 
2.15.7 DBF Files and IDX Files................................................................................................135 
2.15.8 File Transfer via SD Card.............................................................................................150 

2.16 COM Ports .............................................................................................................................158 



 

CipherLab C Programming Guide 

2.16.1 Port Mapping................................................................................................................158 
2.16.2 Receive & Transmit Buffers ........................................................................................159 
2.16.3 Flow Control .................................................................................................................159 

2.17 TCP/IP Communications......................................................................................................167 
2.17.1 Native Programming Interface....................................................................................167 
2.17.2 Socket Programming Interface ...................................................................................171 
2.17.3 Byte Swapping..............................................................................................................191 
2.17.4 Supplemental Functions .............................................................................................193 

2.18 Wireless Networking ............................................................................................................199 
2.18.1 Network Configuration.................................................................................................201 
2.18.2 Initialization & Termination .........................................................................................203 
2.18.3 Network Status ............................................................................................................207 
2.18.4 IEEE 802.11 b/g ..........................................................................................................208 
2.18.5 NETCONFIG Structure (802.11b/g) ............................................................................209 
2.18.6 NETSTATUS Structure (802.11b/g) ............................................................................215 
2.18.7 RADIOSTATUS Structure (802.11b/g) ........................................................................218 

2.19 Bluetooth ..............................................................................................................................219 
2.19.1 BTCONFIG Structure ....................................................................................................221 
2.19.2 BTSTATUS Structure ....................................................................................................225 
2.19.3 Frequent Device List....................................................................................................226 
2.19.4 Inquiry...........................................................................................................................227 
2.19.5 Pairing...........................................................................................................................228 
2.19.6 Useful Function Call.....................................................................................................229 

2.20 GSM/GPRS ...........................................................................................................................231 
2.20.1 GSMCONFIG Structure (GSM/GPRS)..........................................................................233 
2.20.2 GSMSTATUS Structure (GSM/GPRS)..........................................................................235 
2.20.3 Security.........................................................................................................................236 
2.20.4 PIN Procedure ..............................................................................................................236 
2.20.5 PUK Procedure.............................................................................................................237 
2.20.6 GSM Programming Flow..............................................................................................238 
2.20.7 GSM Signal Quality (RSSI) ...........................................................................................241 

2.21 Acoustic Coupler...................................................................................................................242 
2.21.1 Modem Mode...............................................................................................................242 
2.21.2 DTMF Mode..................................................................................................................243 

2.22 Modem, Ethernet & GPRS Connection ...............................................................................248 
2.22.1 PPP via Modem Cradle/RS-232..................................................................................249 
2.22.2 PPPCONFIG Structure..................................................................................................249 
2.22.3 Ethernet via Cradle ......................................................................................................250 
2.22.4 GPRS via Cradle & GSMCONFIG Structure.................................................................250 

2.23 USB Connection....................................................................................................................252 
2.23.1 USBCONFIG Structure .................................................................................................253 

2.24 SD Card .................................................................................................................................254 
2.24.1 File System...................................................................................................................254 
2.24.2 Directory .......................................................................................................................255 
2.24.3 File Name .....................................................................................................................257 
2.24.4 FILEINFO Structure ......................................................................................................258 
2.24.5 SD Card Manipulation .................................................................................................259 
2.24.6 Mass Storage Device...................................................................................................277 
2.24.7 Error Code ....................................................................................................................278 



 

CipherLab C Programming Guide 

 

STANDARD LIBRARY ROUTINES......................................................................................................281 
3.1 Input & Output: <stdio.h> ......................................................................................................281 
3.2 Character Class Tests: <ctype.h>..........................................................................................281 
3.3 String Functions: <string.h>...................................................................................................282 

3.3.1 Functions start with “str” ...............................................................................................282 
3.3.2 Functions start with “mem”...........................................................................................283 

3.4 Mathematical Functions: <math.h>......................................................................................283 
3.5 Utility Functions: <stdlib.h> ...................................................................................................284 

3.5.1 Number Conversion .......................................................................................................284 
3.5.2 Storage Allocation ..........................................................................................................284 

3.6 Diagnostics: <assert.h> .........................................................................................................285 
3.7 Variable Argument Lists: <stdarg.h>.....................................................................................285 
3.8 Non-Local Jumps: <setjmp.h> ...............................................................................................285 
3.9 Signals: <signal.h> .................................................................................................................285 
3.10 Time & Date Functions: <time.h> .......................................................................................285 
3.11 Implementation-defined Limits: <limits.h>, <float.h> .......................................................285 

REAL-TIME KERNEL .........................................................................................................................287 

SCANNERDESTBL ARRAY ................................................................................................................293 
Symbology Parameter Table I .......................................................................................................293 
Symbology Parameter Table II ......................................................................................................300 

SYMBOLOGY PARAMETERS.............................................................................................................309 
Scan Engine, CCD or Laser ...........................................................................................................309 

Codabar ....................................................................................................................................309 
Code 2 of 5 Family ...................................................................................................................310 
Code 39 ....................................................................................................................................312 
Code 93 ....................................................................................................................................313 
Code 128/EAN-128/ISBT 128................................................................................................314 
Italian/French Pharmacode ....................................................................................................314 
MSI ............................................................................................................................................315 
Negative Barcode.....................................................................................................................316 
Plessey......................................................................................................................................316 
RSS Family................................................................................................................................317 
Telepen .....................................................................................................................................318 
UPC/EAN Families....................................................................................................................318 

Scan Engine, 2D or (Extra) Long Range Laser.............................................................................321 
Codabar ....................................................................................................................................321 
Code 2 of 5 ...............................................................................................................................321 
Code 39 ....................................................................................................................................323 
Code 93 ....................................................................................................................................324 
Code 128..................................................................................................................................324 
MSI ............................................................................................................................................325 
RSS Family................................................................................................................................326 
UPC/EAN Families....................................................................................................................326 
UCC Coupon Code ....................................................................................................................328 
Joint Configuration ...................................................................................................................328 
Code 11 ....................................................................................................................................330 



 

CipherLab C Programming Guide 

2D Scan Engine Only.....................................................................................................................331 
1D Symbologies .......................................................................................................................331 
Composite Codes .....................................................................................................................333 
2D Symbologies .......................................................................................................................335 

SCANNER PARAMETERS .................................................................................................................337 
Scan Mode.....................................................................................................................................337 

Comparison Table ....................................................................................................................338 
Read Redundancy .........................................................................................................................340 
Time-Out.........................................................................................................................................341 
User Preferences...........................................................................................................................341 

CRADLE COMMANDS.......................................................................................................................343 

NET PARAMETERS BY INDEX ..........................................................................................................347 
NETCONFIG & BTCONFIG..............................................................................................................347 
GSMCONFIG...................................................................................................................................349 
PPPCONFIG....................................................................................................................................349 
USBCONFIG....................................................................................................................................349 

NET STATUS BY INDEX.....................................................................................................................351 

EXAMPLES .......................................................................................................................................353 
WLAN Example (802.11b/g) ........................................................................................................353 

WPA Enabled for Security ........................................................................................................355 
Bluetooth Examples ......................................................................................................................356 

SPP............................................................................................................................................356 
Wedge Emulator via SPP .........................................................................................................357 
HID ............................................................................................................................................359 
DUN...........................................................................................................................................361 
PAN............................................................................................................................................361 
DUN-GPRS ................................................................................................................................361 

GSM/GPRS Examples ...................................................................................................................362 
GPRS .........................................................................................................................................362 
GSM ..........................................................................................................................................363 

Acoustic Coupler Example ............................................................................................................365 
USB Example .................................................................................................................................366 

USB Virtual COM.......................................................................................................................366 
USB HID ....................................................................................................................................367 
USB Mass Storage Device .......................................................................................................369 

INDEX ...............................................................................................................................................371 
  





  1 

 

 

This “C” Programming Guide describes the application development process with the “C” 
Compiler in details. It starts with the general information about the features and usages 
of the development tools, the definition of the functions/statements, as well as some 
sample programs.  

This programming guide is meant for users to write application programs for CipherLab 8 
Series Mobile Computers by using the “C” Compiler. It is organized in five chapters giving 
outlines as follows: 

 

 Chapter 1 “Development Environment” – gives a concise introduction about the “C” 
Compiler and the development flow for applications, which provides step-by-step 
description in developing application programs for the mobile computers with the “C” 
Compiler. 

 

 Chapter 2 “Mobile-specific Function Library” – presents callable routines that are 
specific to the features of the mobile computers.  

 

 

 Chapter 3 “Standard Library Routines” – briefly describes the standard ANSI library 
routines for in many ANSI related literatures there can be found more detailed 
information. 

 

 

 Chapter 4  “Real Time Kernel” – discusses the concepts of the real time kernel, 
µC/OS. Users can generate a real time multi-tasking system by using the µC/OS 
functions. 

 

 

 Chapter 5 “Simulator” – describes how a simulator works and how to use it in 
developing application programs.  

 

 

 

 

INTRODUCTION 



2 

 

CipherLab C Programming Guide 



  3 

 

 

The C Language Development Kit for CipherLab 8 Series Mobile Computers contains six 
directories, namely, BIN, ETC, INCLUDE, LIB, README and USER.  

To set up the C language development environment on your PC, you may create the 
\C_Compiler directory from the root directory first. Then, simply copy the above six 
directories from the CD-ROM to the \C_Compiler directory. 

 

IN THIS CHAPTER 

1.1 Directory Structure & Variables...................................... 3 
1.2 Development Flow ....................................................... 6 
1.3 C Compiler................................................................ 12 
 

1.1 DIRECTORY STRUCTURE & VARIABLES 

1.1.1 DIRECTORY STRUCTURE 

The purposes and contents of each directory are listed below.  

 
 

Chapter 1 
DEVELOPMENT ENVIRONMENT 



4 

 

CipherLab C Programming Guide 

 

BIN 

This directory contains executable files. Usage will be described further in later sections. 

 The BIN folder is for Windows 2000 and Windows XP.  

 The BIN for Vista-Win7 folder is for Windows Vista and Windows 7. 

 A number of execution files for compilation, linking, and so on. 

ASM900.EXE CC900.EXE EZDRIVER.DLL MAC900.EXE 

THC1.EXE THC2.EXE TUAPP.EXE TUCONV.EXE 

TUFAL.EXE TULIB.EXE TULINK.EXE TUMPL.EXE  

Note: Depending on your operation system, please make sure to use the correct link file. 
 

ETC 

This directory contains help and version information of the C Compiler. 
 

INCLUDE 

This directory contains header files. 

 1 header file for mobile-specific library: e.g. 8500lib.h 

 1 header file for Real-Time Kernel Library: UCOS.H 

 “C” header files for standard library routines: 

CTYPE.H ERRNO.H FLOAT.H LIMITS.H MATH.H 

STDARG.H STDDEF.H STDIO.H STDLIB.H STRING.H 

TCPIP.H      
 

LIB 

This directory contains library object code files. 

 “C” standard library: C900ml.lib 

 Mobile-specific library: 8000lib.lib, 8300lib.lib, 8400lib.lib and 8500lib.lib 
 

Readme 

This directory contains C Compiler version update and supplemental information. 
 

Sample Program 

This directory contains source code of the user program or other sample programs. 
 

Download Utilities 

This directory contains utilities for downloading a program (.SHX, .SYN) or font file (.SHX) to the 
mobile computer. 

Note: USB Virtual COM also shares the interface option of RS-232/IrDA. 
 



  5 

 

 Chapter 1  Development Environment 

 

Font 

This directory contains available font files. 
 

Kernel 

This directory contains kernel programs. 
 

Link File 

This directory contains link files for (1) Windows 2000, XP and (2) Windows Vista, Windows 7. 
 

Manual 

This directory contains programming documents. 

1.1.2 ENVIRONMENT VARIABLES 

Before using the compiler, some environmental variables must be added to 
autoexec.bat. 

 path = C:\C_Compiler\BIN (or your own path) 

So that all executable files (.EXE and .BAT) can be found. 

 set THOME = C:\C_Compiler\ 

This is a must for the compiler to locate all necessary files. 

 set tmp = C:\tmp 

This is the temporary working directory for the compiler and linker (for memory and 
file swapping). Skip this if tmp is already specified.  



6 

 

CipherLab C Programming Guide 

 

1.2 DEVELOPMENT FLOW 

The development process is much like writing any other C programs on PC. The flow is 
illustrated as shown below. 

               
 



  7 

 

 Chapter 1  Development Environment 

 

1.2.1 CREATE YOUR OWN C SOURCE PROGRAM 

The first step is to create or modify the desired C programs using any text editors. We 
recommend that you use “.C” as the file extension and create program files under the 
USER directory so that you can use the USER directory as the working directory. We 
also recommend that you divide the whole program into modules while retaining function 
integrity, and put modules into separate files to reduce compilation time.  
 

1.2.2 COMPILE 

To compile the C programs, use cc900 command in the directory of the target file. For 
the usage of cc900 command and the options, please refer to “cc900.hlp” in the ETC 
subdirectory.  

Cc900 –[options] FILENAME.C 

The batch file “Y.BAT” which can be found under the USER directory has been created to 
simplify the compiling process. 

Y FILENAME.C 

This batch file invokes the C compilation program which in turn calls many other 
executable programs under the BIN directory. As these programs are invoked by the 
compiler sequentially, their usages can be ignored. Also, many parameters are set in 
calling the compiler driver to accommodate target machine environments. It is 
recommended to use the Y.BAT file directly. If you attempt to write your own batch file, 
remember to put the same parameters as shown below. 

 -XA1, -XC1, -XD1, -Xp1: alignment setting, all 1 

 -XF: no deletion of assembly file, if it is not necessary to examine the assembly file. 
This option can be removed. 

 -O3: set optimization level (can be 0 to 3, but not the maximum optimization). If 
code size and performance is not a problem, this option can be removed which will 
then set to the default – O0, that is, no optimization at all. If optimization is enabled, 
care must be taken that some instructions might be optimized and removed. For 
example, 
Test() 

{ 

unsigned int old_msec; 

old_msec = sys_msec; 

while (old_msec == sys_msec); 

} 

This routine waits until sys_msec is changed. And sys_msec is a system variable that is 
updated each 5 milliseconds by background interrupt. If optimization is enabled, this 
whole routine is truncated as it is meaningless (which is a dead-loop). To avoid this, the 
type identifier “volatile” can be used to suppress optimization.  
 



8 

 

CipherLab C Programming Guide 

 

 -c: create object but no link 

 -e cerr.lst: create error list file “CERR.LST” 

After compilation is completed, a relocatable object file named “program_name.REL” is 
created which can be used later by the linker to create the executable object program. As 
the compiler compiles the program into assembler form during the process, an 
accompanying assembler source file “program_name.ASM” is also created. This file helps 
in debugging if necessary. If any error occurs, they will be put into the file “CERR.LST” 
for further examination. 
 

1.2.3 LINK 

If the C source programs are successfully compiled into relocatable object files, the linker 
must be used to create the absolute objects, and then the file can be downloaded to the 
target machine’s flash memory for execution. However, a linker map file must be 
created.  

TULINK FILENAME.LNK 

This map file “FILENAME.LNK” is used to instruct the linker to allocate absolute addresses 
of code, data, constant, and so on according to the target machine environments. This is 
a lengthy process as it depends on the hardware architecture. Fortunately, a sample 
linker map file is provided and few steps are required to customize it for your own need, 
while leaving hardware-related stuff unchanged.  

From the following sample linker file, you can see that only the file names need to be 
changed (underlined & boldfaced sections). If the linking is successful, an absolute object 
file named “FILE1.ABS” is created. Besides, a file named “FILE1.MAP” lists all code and 
variable addresses, and, error messages if there is any. 

SAMPLE LINKER FILE 

-lm –lg –ll           /* For Windows 2000, XP: parameters for TULINK, do not change */ 

        /* For Windows Vista, Windows 7: remove “-lg” */ 

 

File1.rel             /* your C program name */ 

File2.rel             /* your C program name */ 

...... 

...... 

FileN.rel             /* your C program name */ 

 

..\lib\8xxxlib.lib    /* 8xxx function library */ 

..\lib\c900ml.lib     /* C standard library */ 

/*********************************************/ 

/*  User could provide suitable values         */ 

/*      to the following variables               */ 

/*********************************************/ 
 



  9 

 

 Chapter 1  Development Environment 

 

MainStackSize = 0x001000; 

HeapSize      = 0x000100; 

MaxSysRamSize = 0x020000; 

 

/*********************************************/ 

/*  Do not modify anything beyond this line   */ 

/*********************************************/ 

memory 

{ 

IRAM: org = 0x001100, len = 0x000e00   /* 0x1000 – 0x10ff IntVec */ 

                                                   /* 0x1f00 – 0x1fff Stack */ 

RAM      : org = 0x205000, len = 0x3b000 

ROM      : org = 0xf00000, len = 0x0e0000 

} 

 

sections 

{ 

code  org = 0xf00000 : { 

        *(f_head) 

        *(f_code) 

} > ROM 

 

area org = 0x205000 : { 

        . += MainStackSize; 

        . += HeapSize; 

        *(f_bcr) 

        *(f_area) 

} > RAM 

 

data  org=org(code)+sizeof(code)  addr=org(area)+sizeof(area) : { 

        *(f_data) 

} /* global variables with initial values */ 

 

xcode org = org(data) + sizeof(data)  addr = addr(data) + sizeof(data) : { 

        *(f_xcode)      /* code reside on RAM */ 

} 

 

RAM_OVERFLOW_CHECK org = org(area) +  MaxSysRamSize : { 

  . += 1; 

} > RAM 



10 

 

CipherLab C Programming Guide 

 

icode org = org(xcode) + sizeof(xcode)  addr = 0x001100 : { 
 

        *(f_icode)      /* code reside on IRAM */ 

} 

 

const org = org(icode) + sizeof(icode) : { 

        *(f_const) 

        *(f_tail) 

} > ROM 

} 

 

ActualRamSize  = (addr(xcode) + sizeof(xcode)+3)/4*4 – 0x205000 ;    

                                                           /* long boundary */ 

SysRamEnd      = org(area) + MaxSysRamSize;         /* long boundary */ 

DataRam        = addr(data); 

XcodeRam       = addr(xcode); 

IcodeRam       = addr(icode); 

HeapTop        = org(area) + MainStackSize; 

 

/* End */ 
 

1.2.4 FORMAT CONVERSION 

The absolute object file created by TULINK is in TOSHIBA’s own format. Before being 
downloaded to the target machine, it must be converted to the Motorola S format by 
using the “TUCONV” utility. 

TUCONV –Fs32 –o FILENAME.shx FILENAME.abs 

The file extension .SHX is a must for the code downloader.  

The batch file “Z.BAT” which can be found under the USER directory has been created to 
simplify the linking and format conversion process. Simply run the batch file: 

Z 

The target executable file (with SHX extension) will then be generated if no error is 
found. 
 



  11 

 

 Chapter 1  Development Environment 

 

1.2.5 DOWNLOAD PROGRAM TO FLASH MEMORY 

Now that the Motorola S format object file FILENAME.shx is created successfully, it can 
be downloaded to the flash memory for testing. Run the ProgLoad.exe utility and 
configure the following parameters properly. 

 File Name: Specify the absolute object file. 

 COM Port: Select the appropriate COM port for transmission. 

 Baud Rate: Supported baud rates are 115200, 57600, 38400, 19200, and 9600. 

 Parity: None 

 Data Bits: 8 

 Flow Control: None 

Note: The selected baud rate, parity, data bits, etc. must match the COM port settings of 
the target machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



12 

 

CipherLab C Programming Guide 

 

1.3 C COMPILER 

This C compiler is for TOSHIBA TLCS-900 family 16-bit MCUs, and it is mostly ANSI 
compatible. Some specific characteristics are presented in this section. 

1.3.1 SIZE OF TYPES 

Types Size in Byte 

char, unsigned char 1 

short int, unsigned short int, int, unsigned int 2 

long int, unsigned long int 4 

pointer 4 

structure, union 4 

1.3.2 REPRESENTATION RANGE OF INTEGERS 

Regarding the representation range of the values of integer types, macros are defined in 
the header file <limits.h> as follows. 

Macro Name Contents 

CHAR_BIT number of bits in a byte (the smallest object) 

SCHAR_MIN minimum value of signed char type 

SCHAR_MAX maximum value of signed char type 

CHAR_MIN minimum value of char type 

CHAR_MAX maximum value of char type 

UCHAR_MAX maximum value of unsigned char type 

MB_LEN_MAX number of bytes in a wide character constant 

SHRT_MIN minimum value of short int type 

SHRT_MAX maximum value of short int type 

USHRT_MAX maximum value of unsigned short int type 

INT_MIN minimum value of int type 

INT_MAX maximum value of int type 

UINT_MAX maximum value of unsigned int type 

LONG_MIN minimum value of long int type 

LONG_MAX maximum value of long int type 

ULONG_MAX maximum value of unsigned long int type 

 
 
 



  13 

 

 Chapter 1  Development Environment 

 

1.3.3 FLOATING TYPES 

Float types are supported and conform to IEEE standards. 

Types Size in Bits 

float 32 

double 64 

long double 64 

1.3.4 ALIGNMENT 

Alignment of different types can be adjusted. This is to facilitate CPU performance by 
trading off memory space. However, when all target systems utilize 8-bit data bus, the 
alignment does not improve performance and is fixed to 1 for all types. In invoking the C 
compiler, driver (-XA1, -XD1, -XC1, and –Xp1) is specified. 

1.3.5 REGISTER AND INTERRUPT HANDLING 

Register and interrupt handling are possible through C. However, they are prohibited as 
all the accessing to system resources is supposed to be made via CipherLab library 
routines.  

1.3.6 RESERVED WORDS 

These are the reserved words (common to all Cs) in general. 

Auto break case char const 

continue default do double else 

enum extern float for goto 

if int long register return 

short signed sizeof static struct 

switch typedef union unsigned void 

volatile while    

 
 
 
 
 
 
 
 
 
 
 



14 

 

CipherLab C Programming Guide 

 

1.3.7 EXTENDED RESERVED WORDS 

These are the reserved words specific to this C compiler and all of them start with two 
underscores (“_ _”). 
 

_ _adcel _ _cdcel _ _near _ _far 

_ _tiny _ _asm _ _io  

_ _XWA _ _XBC _ _XDE _ _XHL 

_ _XIX _ _XIY _ _XIZ _ _XSP 

_ _WA _ _BC _ _DE _ _HL 

_ _IX _ _IY _ _IZ _ _W 

_ _A _ _B _ _C _ _D 

_ _E _ _H _ _L _ _SF 

_ _ZF _ _VF _ _CF  

_ _DMAS0 _ _DMAS1 _ _DMAS2 _ _DMAS3 

_ _DMAD0 _ _DMAD1 _ _DMAD2 _ _DMAD3 

_ _DMAC0 _ _DMAC1 _ _DMAC2 _ _DMAC3 

_ _DMAM0 _ _DMAM1 _ _DMAM2 _ _DMAM3 

_ _NSP _ _XNSP _ _INTNEST  
 

1.3.8 BIT-FIELD USAGE 

The following types can be used as the bit field base types. The allocation is made as 
shown in the illustrations. 

Types Size in Bits 

char, unsigned char 8 

short int, unsigned short int, int, unsigned int 16 

long int, unsigned long int 32 

The bit-field can be very useful in some cases. However, if memory is not a concern, it is 
recommended not to use the bit-fields because the code size is downscaled at the cost of 
degraded performance. 
 



  15 

 

 Chapter 1  Development Environment 

 

Fields Stored from the Highest Bits 

 

 
 

Fields Stored from the Highest Bits 

If the base type of a bit field member is a type requiring two bytes or more (e.g. unsigned int), the 
data is stored in memory after its bytes are turned upside down. 

                    

 
 

Different Types (Different Size) 

A bit field with different type is assigned to a new area. 

 

 
 



16 

 

CipherLab C Programming Guide 

 

Different Types (signed/unsigned) 

 

 
 

Different Types (Same Size) 

 

 

 
 
 
 

 



  17 

 

 

There are a number of mobile-specific library routines to facilitate the development of the 
user program. These functions cover a wide variety of tasks, including communications, 
show string or bitmap on the LCD, buzzer control, scanning, file manipulation, etc. They 
are categorized and described in this section by their functions or the resources they 
work on.  

The function prototypes of the library routines, as well as the declaration of the system 
variables, can be found in the library header file, e.g. “8300lib.h”. It is assumed that the 
programmer has prior knowledge of the C language. 

IN THIS CHAPTER 

2.1 System .................................................................... 18 
2.2 Barcode Reader ......................................................... 45 
2.3 RFID Reader ............................................................. 53 
2.4 Keyboard Wedge ....................................................... 58 
2.5 Buzzer ..................................................................... 64 
2.6 LED Indicator ............................................................ 67 
2.7 Vibrator & Heater....................................................... 68 
2.8 Real-Time Clock......................................................... 70 
2.9 Battery & Charging .................................................... 73 
2.10 Keypad................................................................... 76 
2.11 LCD ....................................................................... 88 
2.12 Touch Screen .........................................................106 
2.13 Fonts.....................................................................110 
2.14 Memory .................................................................116 
2.15 File Manipulation.....................................................120 
2.16 COM Ports..............................................................158 
2.17 TCP/IP Communications ...........................................167 
2.18 Wireless Networking ................................................199 
2.19 Bluetooth...............................................................219 
2.20 GSM/GPRS.............................................................231 
2.21 Acoustic Coupler .....................................................242 
2.22 Modem, Ethernet & GPRS Connection.........................248 
2.23 USB Connection ......................................................252 
2.24 SD Card.................................................................254 
 
 

Chapter 2 
MOBILE-SPECIFIC FUNCTION LIBRARY 



18 

 

CipherLab C Programming Guide 

 

2.1 SYSTEM 

2.1.1 GENERAL 

_KeepAlive__   

Purpose To let the user program keep on running and prevent it from being 
automatically shut down by the system. 

Syntax void _KeepAlive__ (void);  

Example ... 

AUTO_OFF = 60;    

_KeepAlive__();  

... 

 

// set 1 minute 

// load the AUTO_OFF value 

Return Value None  

Remarks Whenever this routine is called, it will reset the counter governed by the global 
variable AUTO_OFF, so that the user program will keep on running without 
suffering from being automatically shut down by the system. 

See Also AUTO_OFF 
 

ChangeSpeed  8000, 8300 

Purpose To change the CPU running speed. 

Syntax void ChangeSpeed (int speed);  

Parameters int speed  int speed  

1 Sixteenth Speed 4 Half Speed 

2 Eighth Speed 5 Full Speed 

3 Quarter Speed   
 

Example ChangeSpeed(4);                   // Set CPU speed to half speed 

Return Value None  

Remarks When high speed operation is not necessary, selecting a slow CPU speed can 
save battery power. 

 

CheckWakeUp  8000, 8400 

Purpose To check whether a wakeup event occurs not. 

Syntax int CheckWakeUp (void);  

Example event = CheckWakeUp();  

Return Value For 8000 Series, the return value can be one of the following: 

Return Value  

0  No wakeup event. 

1 POWER_KEY_PRESSED The POWER key is pressed. 

2 CHARGE_OK Charging process has been completed. 

3 TIME_IS_UP The alarm time is up. 
 

 



  19 

 

 Chapter 2  Mobile-Specific Function Library 

 

 For 8400 Series, the return value can be one of the following: 

Return Value  

0  No wakeup event. 

2 RS232_CABLE_DETECTED RS-232 cable is detected. 

4 CHARGING Charging process is ongoing. 

8 CHARGE_OK Charging process has been completed. 

16 POWER_KEY_PRESSED The POWER key is pressed. 

32 TIME_IS_UP The alarm time is up. 

64 USB_DETECTED USB cable is detected. 

128 RS232_DATA_RXED Data is received via RS-232. 
 

 
 

GetIOPinStatus 8400 

Purpose To check the I/O pin status. 

Syntax unsigned int GetIOPinStatus (void) ; 

Example iStatus = GetIOPinStatus(); 

if (iStatus&0x10)   

printf(“RS232 cable is connected.”); 

else if (iStatus&0x20)   

printf(“USB cable is connected.”); 

if (iStatus&0x40)   

printf(“Adapter is connected.”); 

Return Value An unsigned integer is returned, summing up values of each item. 

Remarks Each bit indicates a certain item as shown below. 

Bit Value Item Remarks 

0x00 NO_CRADLE Not seated in any cradle. 

0x01 MODEM_CRADLE Seated in the Modem Cradle. 

0x02 ETHERNET_CRADLE Seated in the Ethernet Cradle. 

0x03 GPRS_CRADLE Seated in the GPRS/GSM Cradle. 

0~
3 

0x04 CHARGER_CRADLE Seated in the standard cradle — 
Charging & Communication Cradle. 

0x00 RS232_CABLE_ 
DISCONNECTED 

RS-232 cable is not connected. 4 

0x10 RS232_CABLE_ 
CONNECTED 

RS-232 cable is connected. 

0x00 USB_CABLE_ 
DISCONNECTED 

USB cable is not connected. 5 

0x20 USB_CABLE_ 
CONNECTED 

USB cable is connected. 

 
 



20 

 

CipherLab C Programming Guide 

 

 0x00 ADAPTER_ 
DISCONNECTED 

5V DC adapter is not connected. 6 

0x40 ADAPTER _CONNECTED 5V DC adapter is connected. 
 

 

SetPwrKey   

Purpose To determine whether the POWER key serves to turn off the mobile computer 
or not. 

Syntax void SetPwrKey (int mode);  

Parameters int mode  

0 POWER_KEY_DISABLE The POWER key is disabled. 

1 POWER_KEY_ENABLE The POWER key is enabled. 
 

Example SetPwrKey(1);  

Return Value None  
 

shut_down   

Purpose To shut down the system. 

Syntax void shut_down (void);  

Example shut_down();  

Return Value None  

Remarks You will have to manually press the POWER key to restart the system. 

See Also system_restart  
 

SysSuspend   

Purpose To enter the suspend mode. 

Syntax void SysSuspend (void);  

Example SysSuspend();  

Return Value None  

Remarks When a wakeup event occurs, the system may resume or restart itself, 
depending on the system setting. 

 

system_restart   

Purpose To restart the system. 

Syntax void system_restart (void);  

Example system_restart();  

Return Value None  

Remarks This routine simply jumps to the Power On Reset point and restarts the system 
automatically. 

See Also shut_down 
 
 



  21 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.1.2 POWER ON RESET (POR) 

After being reset, a portion of library functions called POR routine initializes the system 
hardware, memory buffers, and parameters such as follows. 

There must be one and only one “main” function in the C program which is the entry 
point of the application program. Control is then transferred to the “main” function 
whenever the system initialization is done. 

COM Ports 

After reset, all COM ports will be disabled. 

Reader Ports 

After reset, all reader ports will be disabled. 

Keypad Scanning 

After reset, keypad scanning will be enabled. 

LCD 

After reset, LCD will be initialized and the displayed contents will be cleared out; the cursor is off 
and set to the upper-left corner (0, 0). 

 Contrast: Level 4 

Backlight 

After reset, the backlight settings for the keypad and LCD will be set to: 

 Duration: 20 seconds 

 Luminosity: Level 2 (= BKLIT_LO) 

 Shade effect: Enabled (= BKLIT_SHADE_LO for 8400 Series) 

LED 

After reset, all the indicators will be set off and reset to default. (= LED_SYSTEM_CTRL for 8400 
Series) 

Calendar 

After reset, Real Time Clock (RTC) will be set to the current time. 

Buzzer Volume (for 8400 Series only) 

After reset, the buzzer will be set off with its volume reset to default. (= HIGH_VOL) 

USB Charging Current (for 8400 Series only) 

After reset, the USB charging current will be set to 500 mA. 

Others… 

Allocate stack area and other parameters. 

 
 
 



22 

 

CipherLab C Programming Guide 

 

2.1.3 SYSTEM GLOBAL VARIABLES 

A number of global variables are declared by the system.  

Note: sys_msec and sys_sec are system timers that are cleared to 0 upon powering up. 
Do not write to these system timers as they are updated by the timer interrupt. 

 

extern volatile unsigned long sys_msec; // in units of 5 milliseconds 
 

extern volatile unsigned long sys_sec; // in units of 1 second 
 

extern unsigned int AUTO_OFF; // in units of 1 second 

This variable governs the counter for the system to automatically shut down the user program 
whenever there is no operation during the preset period.  

When it is set to 0, the AUTO_OFF function will be disabled. 

... 

AUTO_OFF = 60;             // set 1 minute 

_KeepAlive__();            // load the AUTO_OFF value 

... 

Note: You must call _KeepAlive__() to reset the counter. 
 

extern unsigned int POWER_ON;   

This variable can be set to either POWERON_RESUME or POWERON_RESTART.  

 By default, it is set to POWERON_RESUME. Upon powering on, the user program will start from 
the last powering off session.  

However, in some cases the user program will always restart itself upon powering on — (1) when 
batteries being removed and loaded back; (2) when entering System Menu before normal 
operation. 

 

extern const int SYSTEM_BEEP [];  

This variable holds the frequency-duration pair of the system beep, which is the sound you hear 
when entering System Menu.  

The following example can be used to sound the system beep. 

on_beeper(SYSTEM_BEEP); 
 

extern unsigned int BKLIT_TIMEOUT;  // in units of 1 second 

This variable holds the backlight timer for the LCD when its backlight is set on.  

 By default, it is set to 20 seconds. 
 

extern long AIMING_TIMEOUT; // in units of 5 milliseconds 

This variable holds the aiming timer for the Aiming mode of CCD, Laser scan engine.  

 By default, it is set to 200 (= 1 second). Note that 0 is not allowed! 
 



  23 

 

 Chapter 2  Mobile-Specific Function Library 

 

extern int IrDA_Timeout; 8000, 8300, 8500 

This variable governs the timer for the IrDA connection; the system will give up trying to establish 
connection with an IrDA device when the timer expires.  

Possible value of this variable can be one of the following time intervals.  

Value   Value   

1 3 seconds (Default) 5 20 seconds  

2 8 seconds  6 25 seconds  

3 12 seconds  7 30 seconds  

4 16 seconds  8 40 seconds  
 

 

extern int BC_X, BC_Y;  

These two variables govern the location of the battery icon. Once their values are changed, the 
battery icon will be moved. 

 8000 Series: Set to (96, 51) by default. 

 8300 Series: Set to (120, 51) by default. 

 8400 Series: Set to (144, 152) by default. 

 8500 Series: Set to (144, 152) by default. 
 

extern int KEY_CLICK [4];  

This variable holds the frequency-duration pair of the key click.  

The following example can be used to generate a beeping sound like the key click. 

on_beeper(KEY_CLICK); 
 

extern unsigned char WakeUp_Event_Mask;  

It is possible to wake up the mobile computer by one of the following pre-defined events: 

Events Meaning 

PwrKey_WakeUp The wakeup event occurs when the POWER key is pressed. 

8000 

Alarm_WakeUp The wakeup event occurs when the alarm time is up. 

Events Meaning 

Wedge_WakeUp The wakeup event occurs when the keyboard wedge cable is 
connected. 

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected. 

Charging_WakeUp The wakeup event occurs when the mobile computer is being 
charged. 

8300 

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done. 

For example, 

WakeUp_Event_Mask = RS232_WakeUp|Charging_WakeUp; 

                               // wake up by RS-232 connection or battery charging events

 
 



24 

 

CipherLab C Programming Guide 

 

Events Meaning 

USB_WakeUp The wakeup event occurs when the USB cable is connected. 

RS232RXD_WakeUp The wakeup event occurs when data is received via RS-232. 

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected. 

Charging_WakeUp The wakeup event occurs when the mobile computer is being 
charged. 

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done. 

PwrKey_WakeUp The wakeup event occurs when the POWER key is pressed. 

8400 

Alarm_WakeUp The wakeup event occurs when the alarm time is up. 

For example, 

WakeUp_Event_Mask = USB_WakeUp|Charging_WakeUp; 

                                   // wake up by USB connection or battery charging events 

Events Meaning 

Charging_WakeUp The wakeup event occurs when the mobile computer is being 
charged. 

8500 

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done. 

For example, 

WakeUp_Event_Mask = Charging_WakeUp;            // wake up by the battery charging event 

 
 
 

extern char ProgVersion[16];  

This character array can be used to store the version information of the user program.  

 Such version information can be checked from the submenu: System Menu | Information.  

Note that your C program needs to declare this variable to overwrite the system default setting.  

For example, 

const char ProgVersion[16] = “Power AP 1.00”; 

 

 

 
 



  25 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.1.4 SYSTEM INFORMATION 

These routines can be used to collect information on the components, either hardware or 
software, of the mobile computer. 

DeviceType   

Purpose To get information of modular components in hardware. 

Syntax void* DeviceType (void);  

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout()); 

Return Value It always returns a pointer indicating where the information is stored. 

Remarks The information of device type is displayed as “xxxx”; each is a digit from 0 to 
9. 

Digits x x x x 

Types Reader Module Wireless Module Others Reserved 

Device Type Meaning 

0xxx No reader 

1xxx CCD scan engine 

2xxx Laser scan engine 

x0xx No wireless module 

x4xx 802.11b/g module 

x5xx Bluetooth module 

x6xx Acoustic coupler module 

xx0x AAA Alkaline battery 

8000 

xx1x Rechargeable Li-ion battery 

Device Type Meaning 

0xxx No reader 

1xxx CCD scan engine (Not for H/W version 4.0) 

2xxx Laser scan engine 

CCD or Laser scan engine (for H/W version 4.0) 

4xxx Long Range Laser scan engine 

x0xx No wireless module 

x1xx 433 MHz module 

x2xx 2.4 GHz module 

x4xx 802.11b/g module 

x5xx Bluetooth module 

x6xx Acoustic coupler module 

8300 

x8xx 802.11b/g + Bluetooth 
 

 
 



26 

 

CipherLab C Programming Guide 

 

 xx0x No RFID 

xx1x RFID module 

xxx0 None 

(8300) 

xxx1 CCD scan engine (Only for H/W version 4.0) 

For hardware version 4.0, when the first digit is “2”, it may refer to CCD or 
Laser scan engine. You will need to check the fourth digit: “1” for CCD, “0” 
for Laser. 

Device Type Meaning 

0xxx No reader 

1xxx CCD scan engine 

2xxx Laser scan engine 

3xxx 2D scan engine 

x4xx 802.11b/g + Bluetooth 

8400 

x5xx Bluetooth module only 

Device Type Meaning 

0xxx No reader 

1xxx CCD scan engine 

2xxx Laser scan engine 

3xxx 2D scan engine 

4xxx Long Range Laser scan engine 

5xxx Extra Long Range Laser scan engine 

x3xx GSM/GPRS + Bluetooth 

x4xx 802.11b/g + Bluetooth 

x5xx Bluetooth module only 

x7xx 802.11b/g + GSM/GPRS + Bluetooth 

xx0x No RFID 

8500 

xx1x RFID module 
 

See Also KeypadLayout 
 

FontVersion   

Purpose To get the version information of font file. 

Syntax void* FontVersion (void);  

Example printf(“FONT:%s”, FontVersion); 

Return Value It always returns a pointer indicating where the information is stored. 

Remarks The font version is “System Font” by default. If any font file is loaded on the 
mobile computer, its file name will be provided here as the version information. 

See Also CheckFont 
 

 
 
 



  27 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetRFmode   

Purpose To find out the current RF mode. 

Syntax int GetRFmode (void);  

Example GetRFmode(); 

Return Value The return value can be 0 ~ 8, depending on the capabilities of your mobile 
computer. 

Remarks Return  

0x00 NO_RF_MODEL (8000, 8300) 

0x01 MODE_433M Obsolete 

0x02 MODE_24G Obsolete 

0x03 MODE_GSMGPRS (8580) 

0x04 MODE_802DOT11 (8071, 8370, 8470, 8570) 

0x05 MODE_BLUETOOTH (8062, 8362, 8400, 8500) 

0x06 MODE_ACOUSTIC (8020, 8021) 

0x07 MODE_802DOT11_GSM (8590) 

0x08 MODE_802DOT11_BT (8330) 
 

 

HardwareVersion  

Purpose To get the version information on hardware. 

Syntax void* HardwareVersion (void);  

Example printf(“H/W:%s”, HardwareVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 
 

KernelVersion   

Purpose To get the version information of kernel. 

Syntax void* KernelVersion (void);  

Example printf(“KNL:%s”, KernelVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 
 

KeypadLayout   

Purpose To get the layout information of keypad. 

Syntax int KeypadLayout (void);  

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout()); 

Return Value 8000 It returns 0 for 21-key. 

8300 It returns 0 for 24-key; 1 for 39-key. 

8400 It returns 0 for 29-key; 1 for 39-key. 

8500 It returns 0 for 24-key; 1 for 44-key Type I; 2 for 44-key Type II 
(= 44-TE key). 

 
 



28 

 

CipherLab C Programming Guide 

 

LibraryVersion   

Purpose To get the version information of mobile-specific library. 

Syntax void* LibraryVersion (void);  

Example printf(“LIB:%s”, LibraryVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 

 8000lib.lib – standard function library for 8000 Series Mobile Computer 

 8300lib.lib – standard function library for 8300 Series Mobile Computer 

 8400lib.lib – standard function library for 8400 Series Mobile Computer  

 8500lib.lib – standard function library for 8500 Series Mobile Computer 

See Also NetVersion 
 

ManufactureDate  

Purpose To get the manufacturing date. 

Syntax void* ManufactureDate (void);  

Example printf(“M/D:%s”, ManufactureDate()); 

Return Value It always returns a pointer indicating where the information is stored. 
 

NetVersion   

Purpose To get the version information of external library. 

Syntax void* NetVersion (void);  

Example printf(“NetLIB:%s”, NetVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 

Remarks This routine gets the version information of external library, if there is any. 

Otherwise, it gets the version information of mobile-specific library. 

 External Library Mobile-specific Library 

8000 80PPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib 

8300 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib 

8400 84PPP.lib --- 84WLAN.lib 8400lib.lib 

8500 --- --- --- 8500lib.lib 
 

See Also DeviceType, LibraryVersion, PPPVersion 
 

OriginalSerialNumber  

Purpose To get the original serial number of the mobile computer. 

Syntax void* OriginalSerialNumber (void); 

Example printf(“S/N:%s”, OriginalSerialNumber()); 

Return Value It always returns a pointer indicating where the information is stored. 

Remarks Note that if the original serial number is “???”, it means the serial number has 
never been modified. 

See Also SerialNumber 
 



  29 

 

 Chapter 2  Mobile-Specific Function Library 

 

PPPVersion  8000, 8300, 8400 

Purpose To get the version information of external PPP library. 

Syntax void* PPPVersion (void);  

Example printf(“PPPLIB:%s”, PPPVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 

Remarks This routine gets the version information of external PPP library, if there is any. 

Otherwise, it returns NONE. 

 External Library Mobile-specific Library 

8000 80PPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib 

8300 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib 

8400 84PPP.lib --- 84WLAN.lib 8400lib.lib 
 

See Also DeviceType, LibraryVersion, NetVersion 
 

RFIDVersion  8300, 8500 

Purpose To get the version information of the RFID module. 

Syntax void* RFIDVersion (void);  

Example printf(“RFID:V%s”, RFIDVersion()); 

Return Value It always returns a pointer indicating where the information is stored. 

See Also DeviceType 
 

SerialNumber   

Purpose To get the current serial number of the mobile computer.  

Syntax void* SerialNumber (void);  

Example printf(“S/N:%s”, SerialNumber()); 

Return Value It always returns a pointer indicating where the information is stored. 

See Also OriginalSerialNumber 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 



30 

 

CipherLab C Programming Guide 

 

2.1.5 SECURITY 

To provide System Menu with password protection so that unauthorized users cannot 
gain access to it, you may either directly enable the password protection mechanism 
from System Menu or through programming. In addition, a number of security-related 
functions are available for using the same password to protect your own application. 
 

CheckPasswordActive  

Purpose To check whether the system password has been applied or not. 

Syntax int CheckPasswordActive (void); 

Example if (CheckPasswordActive()) 

printf(“Please input password:”); 

Return Value If applied, it returns 1.  

Otherwise, it returns 0. (= No password is required.) 

Remarks By default, System Menu is not password-protected. 
 

CheckSysPassword  

Purpose To check whether the input string matches the system password or not. 

Syntax int CheckSysPassword (const char *psw); 

Example if (!CheckSysPassword(szInput)) 

printf(“Password incorrect!!!”); 

Return Value If the input string matches the system password, it returns 1.  

Otherwise, it returns 0. 

Remarks If the system password has been applied and you want to use the same 
password to protect your application, then this routine can be used to check if 
the input string matches the system password. 

 

InputPassword   

Purpose To provide simple edit control for the user to input the password.  

Syntax int InputPassword (char *psw); 

Example char szPsw[10]; 

printf(“Input password:”); 

if (InputPassword(szPsw)) 

if (!CheckSysPassword(szPsw)) 

        printf(“Illegal password!”); 

Return Value If the user input is confirmed by hitting [Enter], it returns 1.  

If the user input is cancelled by hitting [ESC], it returns 0. 

Remarks Instead of showing normal characters on the display, it shows an asterisk (*) 
whenever the user inputs a character. 

 
 



  31 

 

 Chapter 2  Mobile-Specific Function Library 

 

SaveSysPassword  

Purpose To save or change the system password.  

Syntax int SaveSysPassword (const char *psw); 

Example SaveSysPassword(“12345”); 

Return Value If successful, it returns 1.  

Otherwise, it returns 0 to indicate the length of password is over 8 characters. 

Remarks The user is allowed to change the system password, but the length of password 
is limited to 8 characters maximum.  

 If the input string is NULL, the system password will be disabled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



32 

 

CipherLab C Programming Guide 

 

2.1.6 PROGRAM MANAGER 

Program Manager, being part of the kernel, is capable of managing multiple programs 
(.shx). 

Flash Memory (Program Manager) 

It is possible to download up to 6 programs by calling LoadProgram(). But only one of them can 
be activated by calling ActivateProgram(), and then the program gets to running upon powering 
on. 

Note: For 8400 Series, it is capable of storing up to 7 programs. 

SRAM (File System) 

By calling DownLoadProgram(), programs can be downloaded to the file system as well. The 
number of programs that can be downloaded depends on the size of SRAM or memory card, but it 
cannot exceed 253. After downloading, the setting of ProgVersion[], if it exists, will be used to be 
the default file name. Otherwise, it will be named as “Unknown” automatically. This file name may 
be changed by rename if necessary.  

 A program in the file system can be loaded to Program Manager (flash memory) by calling 
UpdateBank(). Its file name, as well as the program version, will be copied to Program 
Manager accordingly. Then it can be activated by calling ActivateProgram(). 

Alternatively, a program in the file system can be directly activated by calling UpdateUser(). If 
the file system is not cleared, it allows options for removing the program from the file system. 

Program Manager Menu 

 Download 

This is furnished by calling LoadProgram(). 

The “Download Via” options may vary by different mobile computers. The above is sample 
screenshots for 8500 Series. For 8300 Series, the options are Direct RS-232, Cradle-IR, and 
IrDA. For 8400 Series, the options are RS-232, USB Virtual COM, Bluetooth, and SD Card. 

 

 



  33 

 

 Chapter 2  Mobile-Specific Function Library 

 

 

 Activate 

This is furnished by calling ActivateProgram(). 

 

 Upload 

Program Manager menu also allows user to upload programs to another mobile computer or 
host computer. Two options are provided after selecting “Upload” from the menu.  

1. Upload > One Program 

2. Upload > All Programs 

However, if the file name (ProgVersion[ ]) of a program is prefixed with a “#” symbol, it 
means the program is protected, and therefore, uploading is not allowed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 

 

CipherLab C Programming Guide 

 

ActivateProgram  

Purpose To make a resident program become the active program (you may clear or 
keep the original file system). 

Syntax void ActivateProgram (int Prog, int mode); 

Parameters int Prog  

1 ~ 6 (Max. 6 programs) Each stands for a resident program on 
8000/8300/8500. 

1 ~ 7 (Max. 7 programs) Each stands for a resident program on 
8400. 

int mode  

0 KEEP_FILE_SYSTEM To keep the original file system. 

1 CLEAR_FILE_SYSTEM To clear the original file system. 
 

Example ActivateProgram(3, KEEP_FILE_SYSTEM);  

            // make program #3 become active and keep the file system

Return Value None 

Remarks This routine copies the desired program (Prog) in flash memory from its 
residence location to the active area, and thus makes it become the active 
program. 

 The original program resided in the active area will then be replaced by the 
new program.  

 The POWER key is disabled to protect the system while replacing the 
program. 

 If successful, the new program will be activated immediately. However, if 
the execution continues running to the next instruction, it means the 
operation of this routine fails. 

See Also DeleteBank, LoadProgram, ProgramInfo, ProgramManager 
 

DeleteBank  8000, 8300, 8400 

Purpose To delete a user program (.shx) from Program Manager (flash memory). 

Syntax int DeleteBank (int slot);  

Parameters int slot  

1 ~ 6 (Max. 6 slots) Each stands for a resident location on 
8000/8300. 

1 ~ 7 (Max. 7 programs) Each stands for a resident program on 
8400. 

 
Example if (DeleteBank(1)) 

printf(“Delete OK”); 

else 

printf(“Delete NG”); 

 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. 

 

See Also ActivateProgram, LoadProgram, UpdateBank 
 
 



  35 

 

 Chapter 2  Mobile-Specific Function Library 

 

DownLoadProgram  

Purpose To download a user program (.shx) to the file system (SRAM). 

Syntax int DownLoadProgram (char *filename, int comport, int baudrate); 

Parameters char *filename 

Pointer to a buffer where filename of the program is stored. 

 A file name can be 8 bytes at most, the null character not included.  

 If the file name is identical to an existing program, the execution will fail. 

int comport  

1 or 2 or 5 COM1 or COM2 or COM5 for transmission 

(COM5 is only supported on 8400) 

int baudrate  

BAUD_115200 

BAUD_76800 

BAUD_57600 

BAUD_38400 

BAUD_19200 

BAUD_9600 

BAUD_4800 

BAUD_2400 

Baud rate setting must be appropriate. 

 
Example val = DownLoadProgram(filename_buffer, 1, BAUD_115200);  

// download user program via COM1 at 115200 bps and return file name 
to filename_buffer 

Return Value If successful, it returns 1. 

On error, it returns 0. 

Otherwise, it returns -1 to indicate the action is aborted. 

Remarks For 8300 Series, it is necessary to set the communication type of the specified 
port before calling this routine, for example, SetCommType(1, 0) for Direct 
RS-232 or SetCommType(1, 2) for Cradle-IR.  

 Download via IrDA is allowed for LoadProgram() only, not for this routine. 

See Also UpdateBank, UpdateUser 
 
 
 



36 

 

CipherLab C Programming Guide 

 

LoadProgram   

Purpose To download a user program (.shx) to flash memory. 

Syntax void LoadProgram (int Prog); 

Parameters int Prog  

1 ~ 6 (Max. 6 programs) Each stands for a resident program on 
8000/8300/8500. 

1 ~ 7 (Max. 7 programs) Each stands for a resident program on 
8400. 

 
Example LoadProgram(3);                // load the user program to location #3 

Return Value None 

Remarks Upon calling this routine, the system exits the user application and enters 
Program Manager | Download page immediately.  

Simply choose “Download Via” and then “Baud Rate” in order to download the 
user program to the specified location. 

See Also ActivateProgram, DeleteBank, ProgramInfo, ProgramManager 
 

ProgramInfo   

Purpose To list program information. 

Syntax int ProgramInfo (int slot, char *programtype, char *programname); 

Parameters int slot  

1 ~ 6 (Max. 6 slots) Each stands for a resident location on 
8000/8300/8500. 

1 ~ 7 (Max. 7 slots) Each stands for a resident location on 
8400. 

char *programtype 

Pointer to a buffer where program type is stored. 

char *programname 

Pointer to a buffer where program name is stored. 
 

Example val = ProgramInfo(2, typebuffer, namebuffer); 

Return Value If successful, it returns the bank size of program. 

Otherwise, it returns 0 to indicate the program does not exist. 

Remarks This routine retrieves program information including its size and name.  

 The program size, in kilo-bytes, depends on how many memory banks one 
program occupies.  

 The program name is the same one as shown in the menu of Program 
Manager.  

 The file type will be returned with a small letter: “c” for a C program, “b” 
for a BASIC program, and “f” for a font file. 

 Since one bank is 64 KB, the return value will be 64, 128, ..., etc. 

See Also ActivateProgram, LoadProgram, ProgramManager 
 



  37 

 

 Chapter 2  Mobile-Specific Function Library 

 

ProgramManager  

Purpose To enter the kernel and bring up the menu of Program Manager. 

Syntax void ProgramManager (void); 

Example ProgramManager();               // jump to the menu of Program Manager

Return Value None 

Remarks Upon calling this routine, the user program stops running and jumps to the 
kernel, and then Program Manager will take over the control. 

See Also ActivateProgram, LoadProgram, ProgramInfo 
 

UpdateBank   

Purpose To copy a user program (.shx or .bin) from the file system (SRAM or SD card) 
to Program Manager (flash memory). 

Syntax int UpdateBank (const char *filename); 

Parameters const char *filename 

Pointer to a buffer where filename of the program is stored. 
 

Example val = UpdateBank(“PlayTest”);     // update bank via a file in SRAM 

val = UpdateBank(“A:\\PlayTest”); // update bank via a file on SD card

Return Value If successful, it returns the residence location of program (slot 1 ~ 6 of 
8000/8300/8500; slot 1 ~ 7 of 8400). 

On error, it returns a negative value to indicate a specific error condition. 

Return Value  

-1  Failed to open file 

-2  Invalid file format 

-3  No free residence location in Program Manager 

-4  No enough free flash 

-5  Failed to read program code from source file 

-6  Failed to erase/write flash 
 

Remarks  If the file is stored in SRAM, the file name can be 8 bytes at most, which 
does not include the null character. 

 If the file name specified is identical to that of an existing program in flash 
memory, the new program will replace the old one. Otherwise, it will be 
stored in an automatically assigned residence location. 

 SD card is allowed only with 8400 Series. If the file name has a prefix of 
“drive A”, such as “A:\\”, this routine will search for the file on SD card. 
Refer to 2.24.2 Directory for how to specify a file path. In this case, if the 
program version of the file (“ProgVersion”) is identical to that of an existing 
program in flash memory, the new program will replace the old one. Note 
that the file name of the specified file on SD card will be ignored! 

See Also DeleteBank, DownLoadProgram, UpdateUser 
 



38 

 

CipherLab C Programming Guide 

 

UpdateUser   

Purpose To make a user program (.shx or .bin), from the file system (SRAM or SD 
card), become the active program. 

Syntax int UpdateUser (const char *filename, int mode,…) ; 

Parameters const char *filename 

Pointer to a buffer where filename of the program is stored. 

int mode  

0 KEEP_FILE_SYSTEM To keep the original file system. 

1 CLEAR_FILE_SYSTEM To clear the original file system. 

int remove  

0  To keep the program in the file system. 

1  To remove the program from the file 
system. 

 
Example val = UpdateUser(“PlayTest”, KEEP_FILE_SYSTEM, 0); 

// activate the program in SRAM, and keep the file system as well as 
this program 

 

val = UpdateUser(“A:\\PlayTest”, KEEP_FILE_SYSTEM, 0); 

// activate the program on SD card, and keep the file system as well 
as this program 

Return Value If successful, the device will restart itself. 

On error, it returns 0~3 to indicate the error condition encountered. 

Return Value  

0  No file 

1  Invalid file format 

2  No enough free flash 

3  File name length is out of limit 
 

Remarks You may call UpdateUser (const char *filename, int mode) or UpdateUser 
(const char *filename, int mode, int remove). 

This routine copies the desired program from the file system directly to the 
active area of Program Manager in flash memory, and thus makes it become 
the active program. The original file system may be kept or cleared (mode). If 
the file system is kept, the program may be removed from it (remove). 

 If the file is stored in SRAM, the file name can be 8 bytes at most, which 
does not include the null character. 

 If the file is stored on SD card, the file name can be 64 bytes at most, 
which includes the null character. 

 The original program resided in the active area will then be replaced by the 
new program.  

 SD card is allowed only with 8400 Series. If the file name has a prefix of 
“A:\\”, this routine will search for the file on SD card. 



  39 

 

 Chapter 2  Mobile-Specific Function Library 

 

  While replacing the program, the POWER key is disabled to protect the 
system.  

 If successful, the new program will be activated immediately. However, if 
the execution continues running to the next instruction, it means the 
operation of this routine fails. 

See Also DownLoadProgram, UpdateBank 

UpdateKernel   

Purpose To update the kernel program (.shx or .bin) by copying the update from the file 
system (SRAM or SD card) to the kernel (flash memory). 

Syntax int UpdateKernel (const char *filename, int mode, int remove); 

Parameters const char *filename 

Pointer to a buffer where filename of the program is stored. 

int mode  

0 KEEP_FILE_SYSTEM To keep the SRAM file system. 

1 CLEAR_FILE_SYSTEM To clear the SRAM file system. 

int remove  

0  To keep the program in the file system. 

1  To remove the program from the file 
system. 

 
Example val = UpdateKernel(“8400K100”, KEEP_FILE_SYSTEM, 0); 

// update kernel via a file in SRAM 

val = UpdateKernel(“A:\\8400K100”, KEEP_FILE_SYSTEM, 0); 

// update kernel via a file on SD card 

Return Value If successful, the device will restart itself. 

On error, it returns 0~5 to indicate the error condition encountered. 

Return Value  

0  No file 

1  Invalid file format 

2  No enough free flash 

3  Write flash error 

4  Read file error 

5  The update version is no greater than the current version. 
 

Remarks  Downgrade is not allowed! 

 It needs 128 KB free flash before successful execution. You may need to 
delete some programs from the flash memory. 

 If the file is stored in SRAM, the file name can be 8 bytes at most, which 
does not include the null character. 

 SD card is allowed only with 8400 Series. If the file name has a prefix of 
“A:\\”, this routine will search for the file on SD card. 

See Also DownLoadProgram, UpdateUser 



40 

 

CipherLab C Programming Guide 

 

2.1.7 DOWNLOAD MODE 

DownLoadPage   

Purpose To stop the application and force the program to jump to System Menu for 
downloading new programs. 

Syntax void DownLoadPage (void); 

void DownLoadPage (int detect, int comtype, int baudrate); 

Example open_com(1, 0x80);             // 38400, N, 8 

DownLoadPage();                // enter “Download” mode 

Return Value None 

Remarks This routine sets the mobile computer to the “Download” mode. The “Download 
Via” page will be displayed, and the user can select the COM port and baud 
rate for program downloading. 

It is possible to pass arguments to suppress the download submenu.  

 Parameter #1 (detect): The constant NO_MENU is a must. 

 Parameter #2 (comtype): Communication type; refer to SetCommType. 

 Parameter #3 (baudrate): Transmission baud rate; refer to open_com. 

For example, 

DownLoadPage(NO_MENU, COMM_DIRECT, BAUD_115200); 

In this case, the mobile computer will be set to the “Ready to download” state 
without prompting the download submenu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  41 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.1.8 MENU DESIGN 

SMENU and MENU structures are defined in the header files. User can simply fill the 
MENU structure and call prc_menu to build a hierarchy menu-driven user interface. 

MENU STRUCTURE 

struct SMENU { 

int total_entry; 

int selected_entry; 

int ReturnFlag; 

char* title; 

     struct SMENU_ENTRY* entry_list[14]; 

}; 

typedef struct SMENU MENU; 
 

Parameter Description 

int total_entry The total number of the menu entries. 

 1~14 

int selected_entry The item number of the selected entry. 

 1~ total_entry 

int ReturnFlag The return flag can be 0 or 1. 

(1) When the return flag is 0, it will return to the current 
menu after executing the function calls it contains or 
pressing [ESC] to exit its sub-menus. 

(2) When the return flag is 1, it will skip the current menu 
after executing the function calls it contains or pressing 
[ESC] to exit its sub-menus. 

char* title The title of this menu. 

struct SMENU_ENTRY* entry_list[14] See MENU_ENTRY Structure 

MENU_ENTRY STRUCTURE 

struct SMENU_ENTRY { 

int text_x; 

int text_y; 

char* text; 

void (*func) (void); 

     struct SMENU *sub_menu; 

}; 

typedef struct SMENU_ENTRY MENU_ENTRY; 



42 

 

CipherLab C Programming Guide 

 

Parameter Description 

int text_x X coordinate of this menu entry. 

int text_y Y coordinate of this menu entry. 

char* text The title of this menu entry. 

Void (*func) (void) The function to be executed when this menu entry is 
selected. 

struct SMENU *sub_menu The sub-menu to be executed when this menu entry is 
selected. 

 
 

prc_menu   

Purpose To create a menu-driven interface. 

Syntax int prc_menu (MENU *menu) ; 

Parameters MENU *menu  

SMENU and MENU structures are defined in the header files. User can simply 
fill the MENU structure and call prc_menu to build a hierarchy menu-driven 
user interface. 

 
Example  

// Declare the MENU_ENTRY before the Menu reference 

MENU_ENTRY Collect; 

MENU_ENTRY Upload;  

MENU_ENTRY Download; 

 

MENU MyMenu={3, 1, 0, “My Menu”, {&Collect, &Upload, &Download}}; 

 

// Declare function before the MENU_ENTRY reference 

void FuncCollect(void); 

void FuncUpload(void); 

void FuncDownload(void); 

MENU_ENTRY Collect = {0, 1, “1. Collect”, FuncCollect, 0}; 

MENU_ENTRY Upload = {0, 2, “2. Upload”, FuncUpload, 0}; 

MENU_ENTRY Download = {0, 3, “3. Download”, FuncDownload, 0}; 

   

void FuncCollect(void) 

{ 

// to do: add your own program code here 

} 

void FuncUpload(void) 

{ 

// to do: add your own program code here 
 
 



  43 

 

 Chapter 2  Mobile-Specific Function Library 

 

 } 

void FuncDownload(void)) 

{ 

// to do: add your own program code here 

} 

  

void main(void) 

{ 

// state_menu 

clr_scr(); 

gotoxy(0, 0); 

// Menu list 

while (1) 

{ 

        prc_menu(&MyMenu);     //* process MyMenu menu */ 

        … 

} 

} 

Return Value If the return flag in the MENU structure is 1, it returns 1. 

Otherwise, it returns 0 to indicate the ESC key was pressed to abort operation. 

Remarks This routine creates a user-defined menu. In addition to using [Up]/[Down] 
and [Enter] keys to select an item, shortcut keys are provided. The first 
character of each item title is treated as a shortcut key. In the above example, 
1, 2, and 3 are shortcut keys for these three items (submenus) respectively. 
That is, you can press [1] on the keypad to directly enter the submenu 
“Collect”. 

If the length of a string for a menu item exceeds the maximum characters 
allowed in one line per screen, it will be divided into segments automatically. 
Then, with the specified interval, these segments are displayed one by one.  

 For 8500 Series, its touch screen functionality has each item in a menu 
taken as a touchable item. That is, each item can be selected by directly 
touching it. If the menu contains more than one page, there will be a 
“page-up” icon in the bottom row of every page except the first one. To go 
to a previous page or menu, you can touch the current menu title. 

See Also GetMenuPauseTime, SetMenuPauseTime 

 
 
 
 
 
 
 
 
 
 



44 

 

CipherLab C Programming Guide 

 

MENU PAUSE TIME 

GetMenuPauseTime  

Purpose To get the interval value for displays of fragments of a string when using 
prc_menu. 

Syntax unsigned long GetMenuPauseTime (void); 

Example interval = GetMenuPauseTime(); 

Return Value If successful, it returns the interval value in units of 5 milli-seconds. 

See Also prc_menu 
 

SetMenuPauseTime  

Purpose To set interval between displays of fragments of a string when using prc_menu. 

Syntax void SetMenuPauseTime (unsigned long time); 

Parameters unsigned long time 

Specify interval in units of 5 milli-seconds. 
 

Example SetMenuPauseTime(200);          // set display interval to 1 second 

Return Value None 

Remarks Varying by the screen size and the font size of alphanumeric characters, if the 
length of a string for a menu item exceeds the maximum characters allowed in 
one line per screen, it will be divided into segments automatically. Then, with 
the specified interval, these segments are displayed one by one.  

The pause time is set to 2 seconds by default. 

See Also prc_menu 
 

 

 

 

 

 

 

 

 

 

 

 
 



  45 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.2 BARCODE READER 

The barcode reader module provides options for a number of scan engines as listed 
below. 

Scan Engine: “9” means supported 8000 8300 8400 8500 

CCD (linear imager) 9 9 9 9 

Standard Laser 9 9 9 9 

Long Range Laser (LR) --- 9 --- 9 

1D 

 

Extra Long Range Laser (ELR) --- --- --- 9 

2D 2D imager --- --- 9 9 
 

2.2.1 BARCODE DECODING 

Below are four global variables related to the barcode decoding routines. These variables 
are declared by the system, and therefore, the user program needs not to declare them. 
 

extern unsigned char ScannerDesTbl[23];       

ScannerDesTbl[40];  

ScannerDesTbl[83]; 

 // 23 bytes for 8000 

// 40 bytes for 8300 

// 83 bytes for 8400, 8500 

The operation of the Decode() routine is governed by this unsigned character array. 

 Refer to Appendix I and II for details of the variable ScannerDesTbl. 

 For 8400/8500 Series, only the first 40 bytes are used currently, and the rest is reserved! 

Note: For 2D or (Extra) Long Range Laser scan engine, it is necessary to enable new 
settings by calling ConfigureReader(). 

extern char CodeBuf[ ];  

After successful decoding, the decoded data is stored in this buffer. 
 

extern char CodeType;  

After successful decoding, the code type (for a symbology being decoded) is stored in this variable. 
 

extern int CodeLen;  

After successful decoding, the length of the decoded data is stored in this variable. 

 

To enable barcode decoding capability in the system, the first thing is that the scanner 
port must be initialized by calling the InitScanner1() function. After the scanner port is 
initialized, the Decode() function can be called in the program loops to perform barcode 
decoding. 

 For CCD or Laser scan engine, the barcode decoding routines consist of 3 functions: 
InitScanner1(), Decode(), and HaltScanner1(). 

 For 2D or (Extra) Long Range Laser scan engine, it is necessary to enable new 
settings by calling ConfigureReader() before InitScanner1(). 

 



46 

 

CipherLab C Programming Guide 

 

ConfigureReader 8300, 8400, 8500 

Purpose To enable new settings on the scan engine according to the ScannerDesTbl 
array. 

Syntax int ConfigureReader (void); 

Example memcpy(ScannerDesTbl, DefaultSetting, sizeof(DefaultSetting)); 

if (ConfigureReader()) 

printf(“Set OK”); 

else 

printf(“Set NG”); 

Return Value If successful, it returns 1.  

Otherwise, it returns 0. 

Remarks For new settings of ScannerDesTbl to take effect on (Extra) Long Range Laser 
or 2D scan engine, it is necessary to call this function. 

Note that this function shall be called before InitScanner1() or after 
HaltScanner1. 

See Also ScannerDesTbl 
 

Decode   

Purpose To perform barcode decoding. 

Syntax int Decode (void); 

Example while(1) { 

if (Decode())  

break; 

} 

Return Value If successful, it returns an integer whose value equals to the string length of 
the decoded data.  

Otherwise, it returns 0. 

Remarks Once the scanner port is initialized by calling InitScanner1(), call this routine to 
perform barcode decoding.  

 This routine should be called constantly in user program loops when 
barcode decoding is required. 

 If barcode decoding is not required for a long period of time, it is 
recommended that the scanner port should be stopped by calling 
HaltScanner1(). 

 If the Decode function decodes successfully, the decoded data will be 
placed in the string variable CodeBuf[] with a string terminating character 
appended. And integer variable CodeLen, as well as the character variable 
CodeType will reflect the length and code type of the decoded data 
respectively. 

See Also HaltScanner1, InitScanner1 
 



  47 

 

 Chapter 2  Mobile-Specific Function Library 

 

HaltScanner1   

Purpose To stop the scanner port from operating. 

Syntax void HaltScanner1 (void); 

Example HaltScanner1(); 

Return Value Once the scanner port is stopped from operating by this routine, it cannot be 
restarted unless it is initialized again by calling InitScanner1(). 

 It is recommended that the scanner port should be stopped if barcode 
decoding is not required for a long period of time. 

Remarks None 

See Also Decode, InitScanner1 
 

InitScanner1   

Purpose To initialize the scanner port. 

Syntax void InitScanner1 (void); 

Example InitScanner1(); 

while(1) { 

if (Decode())  

break; 

} 

Return Value The scanner port will not work unless it is initialized. 

Remarks None 

See Also Decode, HaltScanner1 
 



48 

 

CipherLab C Programming Guide 

 

2.2.2 CODE TYPE 

The following tables list the values of the variable CodeType. 

Note: For CCD or Laser scan engine, the variable OrgCodeType is provided for 
identifying the original code type when a conversion has occurred. 

CodeType Table I: 

DEC ASCII Symbology Supported by Scan Engine 

63 ? Coop 25 8000, 8300, 8400 — CCD, Laser 

64 @ ISBT 128 CCD, Laser 

65 A Code 39 CCD, Laser 

66 B Italian Pharmacode CCD, Laser 

67 C CIP 39 (French Pharmacode) CCD, Laser 

68 D Industrial 25 CCD, Laser 

69 E Interleaved 25 CCD, Laser 

70 F Matrix 25 CCD, Laser 

71 G Codabar (NW7) CCD, Laser 

72 H Code 93 CCD, Laser 

73 I Code 128 CCD, Laser 

74 J UPC-E0 / UPC-E1 CCD, Laser 

75 K UPC-E with Addon 2 CCD, Laser 

76 L UPC-E with Addon 5 CCD, Laser 

77 M EAN-8 CCD, Laser 

78 N EAN-8 with Addon 2 CCD, Laser 

79 O EAN-8 with Addon 5 CCD, Laser 

80 P EAN-13 / UPC-A CCD, Laser 

81 Q EAN-13 with Addon 2 CCD, Laser 

82 R EAN-13 with Addon 5 CCD, Laser 

83 S MSI CCD, Laser 

84 T Plessey CCD, Laser 

85 U GS1-128 (EAN-128) CCD, Laser 

86 V Reserved --- 

87 W Reserved --- 

88 X Reserved --- 

89 Y Reserved --- 

90 Z Telepen CCD, Laser 



  49 

 

 Chapter 2  Mobile-Specific Function Library 

 

91 [ GS1 DataBar (RSS) CCD, Laser 

92 \ Reserved --- 

93 ] Reserved --- 

 

A variable, OrgCodeType, is provided for identifying the original code type when a 
conversion has occurred.  

For example, if “Convert EAN-8 to EAN-13” is enabled, an EAN-8 barcode is decoded to 
EAN-13 barcode. Its code type is EAN-13 now and the original code type is EAN-8. 

OrgCodeType Table: 

DEC ASCII Symbology Supported by Scan Engine 

65 A UPC-E CCD, Laser 

66 B UPC-E with Addon 2 CCD, Laser 

67 C UPC-E with Addon 5 CCD, Laser 

68 D EAN-8 CCD, Laser 

69 E EAN-8 with Addon 2 CCD, Laser 

70 F EAN-8 with Addon 5 CCD, Laser 

71 G EAN-13 CCD, Laser 

72 H EAN-13 with Addon 2 CCD, Laser 

73 I EAN-13 with Addon 5 CCD, Laser 

74 J UPC-A CCD, Laser 

75 K UPC-A with Addon 2 CCD, Laser 

76 L UPC-A with Addon 5 CCD, Laser 

0 NUL None CCD, Laser 

 
 



50 

 

CipherLab C Programming Guide 

 

CodeType Table II: 

DEC ASCII Symbology Supported by Scan Engine 

64 @ ISBT 128 2D, (Extra) Long Range Laser 

65 A Code 39 2D, (Extra) Long Range Laser 

66 B Code 32 (Italian Pharmacode) 2D, (Extra) Long Range Laser 

67 C N/A --- 

68 D N/A --- 

69 E Interleaved 25 2D, (Extra) Long Range Laser 

70 F Matrix 25 8400-2D 

71 G Codabar (NW7) 2D, (Extra) Long Range Laser 

72 H Code 93 2D, (Extra) Long Range Laser 

73 I Code 128 2D, (Extra) Long Range Laser 

74 J UPC-E0 2D, (Extra) Long Range Laser 

75 K UPC-E with Addon 2 2D, (Extra) Long Range Laser 

76 L UPC-E with Addon 5 2D, (Extra) Long Range Laser 

77 M EAN-8 2D, (Extra) Long Range Laser 

78 N EAN-8 with Addon 2 2D, (Extra) Long Range Laser 

79 O EAN-8 with Addon 5 2D, (Extra) Long Range Laser 

80 P EAN-13 2D, (Extra) Long Range Laser 

81 Q EAN-13 with Addon 2 2D, (Extra) Long Range Laser 

82 R EAN-13 with Addon 5 2D, (Extra) Long Range Laser 

83 S MSI 2D, (Extra) Long Range Laser 

84 T N/A --- 

85 U GS1-128 (EAN-128) 2D, (Extra) Long Range Laser 

86 V Reserved ---  

87 W Reserved --- 

88 X Reserved --- 

89 Y Reserved --- 

90 Z Reserved --- 

91 [ GS1 DataBar Omnidirectional (RSS-14) 2D, (Extra) Long Range Laser 

92 \ GS1 DataBar Limited (RSS Limited) 2D, (Extra) Long Range Laser 

93 ] GS1 DataBar Expanded (RSS Expanded) 2D, (Extra) Long Range Laser 

94 ^ UPC-A 2D, (Extra) Long Range Laser 

95 _ UPC-A Addon 2 2D, (Extra) Long Range Laser 

96 ‘ UPC-A Addon 5 2D, (Extra) Long Range Laser 

97 a UPC-E1 2D, (Extra) Long Range Laser 



  51 

 

 Chapter 2  Mobile-Specific Function Library 

 

98 b UPC-E1 Addon 2 2D, (Extra) Long Range Laser 

99 c UPC-E1 Addon 5 2D, (Extra) Long Range Laser 

100 d  TLC-39 (TCIF Linked Code 39) 2D 

101 e Trioptic (Code 39) 2D, (Extra) Long Range Laser 

102 f Bookland (EAN) 2D, (Extra) Long Range Laser 

103 g Code 11 2D, 8300-Long Range 

104 h Code 39 Full ASCII 2D, (Extra) Long Range Laser 

105 i IATANote (25) 2D, (Extra) Long Range Laser 

106 j Industrial 25 (Discrete 25) 2D, (Extra) Long Range Laser 

107 k  PDF417 2D 

108 l MicroPDF417 2D 

109 m Data Matrix 2D 

110 n Maxicode 2D 

111 o QR Code 2D 

112 p US Postnet 2D 

113 q US Planet 2D 

114 r UK Postal 2D 

115 s Japan Postal 2D 

116 t Australian Postal 2D 

117 u Dutch Postal 2D 

118 v Composite Code 2D 

119 w Macro PDF417 2D 

120 x Macro MicroPDF417 2D 

121 y Chinese 25 8400-2D 

122 z Aztec 8400-2D 

123 { MicroQR 8400-2D 

124 | USPS 4CB / One Code / Intelligent Mail 8400-2D 

125 } UPU FICS Postal 8400-2D 

126 ~ Coupon Code 2D, (Extra) Long Range Laser 

Note: IATA stands for International Air Transport Association, and this barcode type is 
used on flight tickets. 

 

 

 



52 

 

CipherLab C Programming Guide 

 

2.2.3 SCANNER DESCRIPTION TABLE 

The unsigned character array ScannerDesTbl (=Scanner Description Table) governs the 
behavior of the Decode() function. Refer to Appendix I for two tables that describe the 
details of the variable ScannerDesTbl: 

 Table I is for the use of CCD or Laser scan engine. 

 Table II is for the use of 2D or (Extra) Long Range Laser scan engine. 

For specific symbology parameters, refer to Appendix II. For scanner parameters, refer 
to Appendix III. 
 
 



  53 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.3 RFID READER 

For 8300/8500 Series, it allows an optional RFID reader that can coexist with the barcode 
reader, if there is any.  

 External Libraries Required for RFID 

Series Hardware Configuration External Libraries Required 

8300 – Batch + RFID 83RFID.lib 8000 

8370 – 802.11b/g + RFID 83WLAN.lib + 83RFID.lib 

8500 8500 – Bluetooth, 802.11b/g + RFID --- 

The RFID reader supports read/write operations, which depend on the tags you are 
using. Supported labels include ISO 15693, Icode®, ISO 14443A, and ISO 14443B. The 
performance of many tags has been confirmed, and the results are listed below. 

Warning: Before programming, you should study the specifications of RFID tags. 

Tag Type UID only Read Page Write Page 

TAG_MifareISO14443A    

Mifare Standard 1K 9 9 9 

Mifare Standard 4K 9 9 9 

Mifare Ultralight 9 9 9 

Mifare DESFire 9 --- --- 

Mifare S50 9 9 9 

SLE44R35 9 --- --- 

SLE66R35 9 9 9 

TAG_SR176    

SRIX 4K 9 9 9 

SR176 9 9 9 

TAG_ISO15693    

ICODE SLI 9 9 9 

SRF55V02P 9 --- --- 

SRF55V02S 9 --- --- 

SRF55V10P 9 ---  --- 

TI Tag-it HF-I 9 9 9 

TAG_Icode    

ICODE 9 9 9 

Note: These are the results found with RFID module version 1.0 (9 for features 
supported), and you may use RFIDVersion() to find out version information. 



54 

 

CipherLab C Programming Guide 

 

2.3.1 VIRTUAL COM 

The algorithm for programming the RFID reader simply follows the routines related to 
COM ports. The virtual COM port for RFID is defined as COM4. Thus, 

 open_com (4, int) : initialize and enable the RFID COM port  

      (parameter int can be any integer value) 

 close_com (4)  : terminate and disable the RFID COM port 

 read_com (4, char*) : read data of card from RFID COM port 

 write_com (4, char*) : write data of card through RFID COM port 

The return values for some related functions are described below. 

Function Return Value 

-1 No Tag 

-2 Get Tag fail 

-3 Get Tag Page fail 

-5 Authentication fail 

read_com (4, char*) 

0 ~ xx Data Length 

-1 No Tag 

-2 Get Tag fail 

-3 Get Tag Page fail 

-4 Write Tag Page fail 

-5 Authentication fail 

0 Other errors 

com_eot (4) 

1 Success 

2.3.2 RFIDPARAMETER STRUCTURE 

Before reading and writing a specific tag, the parameters of RFID must be specified by 
calling RFIDReadFormat() and RFIDWriteFormat().  

Parameter Description 

unsigned char 
TagType[4] 

 TagType[0] 

Bit 7 ~ 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Reserved ISO 
14443B 

SR176 ISO 
14443A 

Icode Tagit ISO 
15693 

 TagType[1~3]: Reserved 

unsigned int 
StartByte 

The starting byte of data for the read/write operation. 

 



  55 

 

 Chapter 2  Mobile-Specific Function Library 

 

unsigned int 
MaxLen 

 Read: The maximum data length (1~255).  

           0 refers to reading UID data only. 

 Write: Reserved (Any integer value is acceptable.) 

unsigned char 
Reserve[20] 

Reserved 

 

2.3.3 RFID DATA FORMAT 

The data format for read_com() is as follows. 

Byte 0 Byte 1 ~ 17 Byte 18 ~ xx 

Tag Type ‘V’ 

‘T’ 

‘I’ 

‘M’ 

‘S’ 

‘Z’ 

TAG_ISO15693 

TAG_Tagit 

TAG_Icode 

TAG_MifareISO14443A 

TAG_SR176 

TAG_ISO14443B 

  

 

     Tag UID (SN) 

 

 

          Data 

 

RFIDReadFormat 8300, 8500 

Purpose To set the reading parameters of RFID. 

Syntax void RFIDReadFormat (RFIDParameter *source); 

Parameters RFIDParameter *source 

Specify the parameters for the reading operation. 
 

Example parameter.TagType[0] = 0x3f;   // all supported tag types are enabled

parameter.StartByte = 0; 

parameter.MaxLen = 150; 

RFIDReadFormat(&parameter); 

Return Value None  

Remarks The parameters must be specified before the reading operation. 
 

RFIDWriteFormat 8300, 8500 

Purpose To set the writing parameters of RFID. 

Syntax void RFIDWriteFormat (RFIDParameter *source); 

Parameters RFIDParameter *source 

Specify the parameters for the writing operation. 
 

Example parameter.TagType[0] = 0x01;         // tag type ISO 15693 is enabled

parameter.StartByte = 0; 

parameter.MaxLen = 0;                 // any integer value 

RFIDWriteFormat(&parameter); 

Return Value None  

Remarks The parameters must be specified before the writing operation. 
 



56 

 

CipherLab C Programming Guide 

 

2.3.4 RFID AUTHENTICATION 

GetRFIDSecurityKey 8300, 8500 

Purpose To check the status of security key for some specific tags. 

Syntax int GetRFIDSecurityKey (unsigned char TagType, unsigned char 
*KeyString, unsigned char *KeyType); 

Parameters unsigned char TagType  

‘V’ 

‘T’ 

‘I’ 

‘M’ 

‘S’ 

‘Z’ 

TAG_ISO15693 

TAG_Tagit 

TAG_Icode 

TAG_MifareISO14443A 

TAG_SR176 

TAG_ISO14443B 

Refer to the table in section 2.3 for more 
information on tag types. 

unsigned char *KeyString 

Pointer to a buffer where key value (string) is stored. 

unsigned char *KeyType 

Pointer to a buffer where key type is stored. 
 

Example if (!GetRFIDSecurityKey(TAG_MifareISO14443A, key_buffer, &keytype))

{ 

printf(“No Sefurity Key.”); 

} 

Return Value If any key exists, it returns 1. 

Otherwise, it returns 0. 

 

Remarks This routine is used to find out if there is a security key for some specific tag, 
such as Mifare Standard 1K/4K or SLE66R35 tag. 

 

SetRFIDSecurityKey 8300, 8500 

Purpose To set the security key of some specific tags. 

Syntax void SetRFIDSecurityKey (unsigned char TagType, unsigned char 
*KeyString, unsigned char KeyType); 

Parameters unsigned char TagType  

‘V’ 

‘T’ 

‘I’ 

‘M’ 

‘S’ 

‘Z’ 

TAG_ISO15693 

TAG_Tagit 

TAG_Icode 

TAG_MifareISO14443A 

TAG_SR176 

TAG_ISO14443B 

Refer to the table in section 2.3 for more 
information on tag types. 

unsigned char *KeyString 

Pointer to a buffer where key value (string) is stored. 
 

 



  57 

 

 Chapter 2  Mobile-Specific Function Library 

 

 unsigned char KeyType  

1 MIFARE_KEYA Key A for Mifare tags 

2 MIFARE_KEYB Key B for Mifare tags 
 

Example SetRFIDSecurityKey(TAG_MifareISO14443A, ‘FFFFFFFFFFFF’,  

MIFARE_KEYA);  

                // set Key A with a specified value for ISO14443A tags

Return Value None 

Remarks This routine is used to set security key for some specific tags, such as Mifare 
Standard 1K/4K and SLE66R35 tags. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



58 

 

CipherLab C Programming Guide 

 

2.4 KEYBOARD WEDGE 

For 8300 Series, it can be programmed to send data to the host through the physical 
wedge interface by using the SendData() routine. For those that do not allow the 
keyboard wedge cable, alternatives are Bluetooth HID, USB HID and the Wedge Emulator 
utility. Refer to the table below, 2.4.3 Wedge Emulator, and Appendix VII — Examples. 

Wedge Options Related Functions Supported by 

Keyboard Wedge Cable 

 

WedgeSetting array, SendData(), 
WedgeReady() 

8300 Series 

Wedge Emulator via IR, 
IrDA, RS-232 

SendData(), WedgeReady(), open_com(), 
SetCommType(), close_com() 

8000/8300/8500 
Series 

Wedge Emulator via 
Bluetooth SPP 

SendData(), WedgeReady(), open_com(), 
SetCommType(), close_com() 

8000/8300/8500 
Series 

Bluetooth HID or USB HID WedgeSetting array, SetCommType(), 
open_com(), com_eot(), write_com(), 
nwrite_com(), close_com() 

8000/8300/8400/8500 
Series 

SendData() is governed by a 3-element unsigned character string – WedgeSetting, 
which is a system-defined global character array and must be filled with appropriate 
values before calling SendData(). 

extern unsigned char WedgeSetting[3];  

The operation of the SendData routine is governed by this unsigned character array. 
 

SendData  8000, 8300, 8500 

Purpose To send a string to the host via keyboard wedge interface. 

Syntax void SendData (char *out_str); 

Parameters char *out_str 

Pointer to a buffer where outgoing data is stored. 
 

Example SendData(CodeBuf); 

Return Value None 
 

WedgeReady  8000, 8300, 8500 

Purpose To check whether the keyboard wedge is ready to send data or not. 

Syntax int WedgeReady (void);  

Example if (WedgeReady()) 

SendData(CodeBuf); 

Return Value If connection is OK, it returns 1. 

Otherwise, it returns 0. 

Remarks Before sending data via keyboard wedge, it is recommended to check if the 
cable is well connected; otherwise, the transmission may be blocked. 

 



  59 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.4.1 DEFINITION OF THE WEDGESETTING ARRAY 

Subscript Bit Description 

0 7 – 0 KBD / Terminal Type 

1 7 1: Enable capital lock auto-detection 

0: Disable capital lock auto-detection 

1 6 1: Capital lock on 

0: Capital lock off 

1 5 1: Ignore alphabets’ case 

0: Alphabets are case-sensitive 

1 4 – 3 00: Normal 

10: Digits at lower position 

11: Digits at upper position 

1 2 – 1 00: Normal 

10: Capital lock keyboard 

11: Shift lock keyboard 

1 0 1: Use numeric keypad to transmit digits 

0: Use alpha-numeric key to transmit digits 

2 7 – 0 Inter-character delay 

1ST ELEMENT: KBD / TERMINAL TYPE 

The possible value of WedgeSetting[0] is listed below. It determines which type of 
keyboard wedge is applied.  

Value Terminal Type Value Terminal Type 

0 Null (Data Not Transmitted) 21 PS55 002-81, 003-81 

1 PCAT (US) 22 PS55 002-2, 003-2 

2 PCAT (FR) 23 PS55 002-82, 003-82 

3 PCAT (GR) 24 PS55 002-3, 003-3 

4 PCAT (IT) 25 PS55 002-8A, 003-8A 

5 PCAT (SV) 26 IBM 3477 TYPE 4 (Japanese) 

6 PCAT (NO) 27 PS2-30 

7 PCAT (UK) 28 Memorex Telex 122 Keys 

8 PCAT (BE) 29 PCXT 

9 PCAT (SP) 30 IBM 5550 

10 PCAT (PO) 31 NEC 5200 

11 PS55 A01-1 32 NEC 9800 



60 

 

CipherLab C Programming Guide 

 

12 PS55 A01-2 33 DEC VT220, 320, 420 

13 PS55 A01-3 34 Macintosh (ADB) 

14 PS55 001-1 35 Hitachi Elles 

15 PS55 001-81 36 Wyse Enhance KBD (US) 

16 PS55 001-2 37 NEC Astra 

17 PS55 001-82 38 Unisys TO-300 

18 PS55 001-3 39 Televideo 965 

19 PS55 001-8A 40 ADDS 1010 

20 PS55 002-1, 003-1   

For example, if the terminal type is PCAT (US), then the first element of the 
WedgeSetting can be defined as follows –  

WedgeSetting[0] = 1 

2ND ELEMENT 

Capital Lock Auto-Detection 

Keyboard Type Capital Lock Auto-Detection 

Enabled Disabled PCAT (all available 
languages), PS2-30, PS55, 
or Memorex Telex 

 

SendData() can automatically 
detect the capital lock status of 
keyboard. That is, it will ignore 
the capital lock status setting and 
perform auto-detection when 
transmitting data.  

SendData() will transmit 
alphabets according to the 
setting of the capital lock status. 

None of the above SendData() will transmit the alphabets according to the setting of 
the capital lock status, even though the auto-detection setting is 
enabled. 

 To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of the 
WedgeSetting array. 

Capital Lock Status Setting 

In order to send alphabets with correct case (upper or lower case), the SendData() routine must 
know the capital lock status of keyboard when transmitting data.  

Incorrect capital lock setting will result in different letter case (for example, ‘A’ becomes ‘a’, and 
‘a’ becomes ‘A’).  

 To set “Capital Lock ON”, add 64 to the value of the second element of the WedgeSetting 
array. 

Alphabets’ Case 

The setting of this bit affects the way the SendData() routine transmits alphabets. SendData() 
can transmit alphabets according to their original case (case-sensitive) or just ignore it. If ignoring 
case is selected, SendData() will always transmit alphabets without adding shift key. 



  61 

 

 Chapter 2  Mobile-Specific Function Library 

 

 To set “Ignore Alphabets Case”, add 32 to the value of the second element of the 
WedgeSetting array. 

Digits’ Position 

This setting can force the SendData() routine to treat the position of the digit keys on the 
keyboard differently. If this setting is set to upper, SendData() will add shift key when 
transmitting digits. This setting will be effective only when the keyboard type selected is PCAT (all 
available language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits 
using numeric keypad, this setting is meaningless. 

 To set “Lower Position”, add 16 to the value of the second element of the WedgeSetting 
array.  

 To set “Upper Position”, add 24 to the value of the second element of the WedgeSetting 
array. 

Shift / Capital Lock Keyboard 

This setting can force the SendData() routine to treat the keyboard type to be a shift lock 
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type 
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex. 

 To set “Capital Lock”, add 4 to the value of the second element of the WedgeSetting array.  

 To set “Shift Lock”, add 6 to the value of the second element of the WedgeSetting array.  

Digit Transmission 

This setting instructs the SendData() routine which group of keys is used to transmit digits, 
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric 
keypad.  

 To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of 
the WedgeSetting array.  

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are 
certain to do so. 

3RD ELEMENT: INTER-CHARACTER DELAY 

A millisecond inter-character delay, in the range of 0 to 255, can be added before 
transmitting each character. This is used to provide some response time for PC to 
process keyboard input.  

For example, to set the inter-character delay to be 10 millisecond, the third element of 
the WedgeSetting array can be defined as, 

WedgeSetting[2] = 10 

 

 
 



62 

 

CipherLab C Programming Guide 

 

2.4.2 COMPOSITION OF OUTPUT STRING 

The mapping of the keyboard wedge characters is as listed below. Each character in the 
output string is translated by this table when the SendData() routine transmits data. 
 

 00 10 20 30 40 50 60 70 80 

0  F2 SP 0 @ P ` p b 

1 INS F3 ! 1 A Q a q c 

2 DLT F4 “ 2 B R b r d 

3 Home F5 # 3 C S c s e 

4 End F6 $ 4 D T d t f 

5 Up F7 % 5 E U e u g 

6 Down F8 & 6 F V f v h 

7 Left F9 ‘ 7 G W g w i 

8 BS F10 ( 8 H X h x j 

9 HT F11 ) 9 I Y i y k 

A LF F12 * : J Z j z  

B Right ESC + ; K [ k {  

C PgUp Exec , < L \ l |  

D CR CR* - = M ] m }  

E PgDn  . > N ^ n ~  

F F1  / ? O _ o Dly ENTER* 

Note: (1) Dly: Delay 100 millisecond       
 (2) b~k: Digits of numeric keypad       
 (3) CR*/Send/ENTER*: ENTER key on the numeric keypad 

 

The SendData() routine can not only transmit simple characters as shown above, but 
also provide a way to transmit combination key status, or even direct scan codes. This is 
done by inserting some special command codes in the output string. A command code is 
a character whose value is between 0xC0 and 0xFF. 

0xC0 : Indicates that the next character is to be treated as scan code. Transmit it as it is, 
no translation required. 

0xC0 | 0x01 : Send next character with Shift key. 

0xC0 | 0x02 : Send next character with Left Ctrl key. 

0xC0 | 0x04 : Send next character with Left Alt key. 

0xC0 | 0x08 : Send next character with Right Ctrl key. 
 



  63 

 

 Chapter 2  Mobile-Specific Function Library 

 

0xC0 | 0x10 : Send next character with Right Alt key. 

0xC0 | 0x20 : Clear all combination status key after sending the next character. 
 

For example, to send [A] [Ctrl-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B] 
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string 
supplied to the SendData() routine. 

0x41, 0xC2, 0x01, 0x35, 0xC0, 0x29, 0x09, 0x32, 0xC3, 0x41, 0x42, 0xC4, 0x31 
0xE4, 0x32, 0xC4, 0x31, 0xC4, 0x33 

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed 
character, and Alt-13 is an Enter.        
 (2) The break after Alt-12 is necessary, if omitted the characters will be treated as 
Alt-1213 instead of Alt-12 and Alt-13. 

2.4.3 WEDGE EMULATOR 

We provide a wedge emulator program “Serial to Keyboard Converter” (Serial2KB.exe) 
for 8000/8300/8500 Series. It lets users convert data to keyboard input via 
IR/IrDA/RS-232/Bluetooth SPP in general wedge functions, such as SendData() and 
WedgeReady(). This utility helps develop a keyboard key in an application without any 
serial port input function. It supports multiple regions, and therefore, an application can 
make use of this tool for varying keyboard layout. Refer to Appendix VII — Examples. 

Note: Alternatively, you may use Bluetooth HID for a wedge application on the 
Bluetooth-enabled mobile computers, or USB HID for 8400 Series. 

 

 
 
 
 
 



64 

 

CipherLab C Programming Guide 

 

2.5 BUZZER 

This section describes the routines manipulating the buzzer. The activation of the buzzer 
is conducted by specifying a beep sequence, which comprises a number of beep 
frequency and beep duration pairs. Once on_beeper() or play() is called, the activation 
of the buzzer is automatically handled by the background operating system. There is no 
need for the application program to wait for the buzzer to stop. Yet, beeper_status() 
and off_beeper() are used to determine whether a beep sequence is undergoing or is to 
be terminated immediately. 
 

2.5.1 BEEP SEQUENCE 

A beep sequence is an integer array that is used to instruct how the buzzer is activated. 
It comprises a number of pairs of beep frequency and duration. Each pair is one beep.  

Beep Sequence = Beep Frequency, Beep Duration, ... 

2.5.2 BEEP FREQUENCY 

A beep frequency is an integer that is used to specify the frequency (tone) of the buzzer 
when it is activated. However, the value of the beep frequency is not the actual 
frequency that the buzzer generates. It is calculated by the following formula: 

Beep Frequency = 76000 / Actual Frequency Desired 

For example, if a frequency of 4 KHz is desired, the value of beep frequency should be 
19. Suitable frequency range is from 1 KHz to 6 KHz, whereas the peak is at 4 KHz. If no 
sound is desired (pause), the beep frequency should be set to 0.  

Note: A beep sequence with frequency set to 0 causes the buzzer to pause, not to stop. 
 

2.5.3 BEEP DURATION 

Beep duration is an integer that is used to specify how long a buzzer will be working at a 
specified beep frequency; it is specified in units of 0.01 second. To have the buzzer work 
for one second, the beep duration should be set to 100.  

Note: When the value of beep duration is set to 0, it will end a beep sequence; the 
buzzer will stop working. 

 
 



  65 

 

 Chapter 2  Mobile-Specific Function Library 

 

beeper_status   

Purpose To check if a beep sequence is in progress. 

Syntax int beeper_status (void); 

Example while (beeper_status());   // wait till a beep sequence is completed

Return Value If beep sequence is undergoing, it returns 1. 

Otherwise, it returns 0. 
 

get_beeper_vol  8400 

Purpose To get the volume of beeper. 

Syntax int get_beeper_vol (void); 

Example val = get_beeper_vol();           // get the volume level 

Return Value It returns the volume level. 
 

off_beeper   

Purpose To terminate a beep sequence immediately if it is in progress. 

Syntax void off_beeper (void); 

Example off_beeper(); 

Return Value None 
 

on_beeper   

Purpose To specify a beep sequence of how a buzzer works. 

Syntax void on_beeper (int *sequence);  

Parameters int *sequence 

Pointer to a buffer where a beep sequence is stored. 
 

Example int two_beeps [] = {19, 10, 0, 10, 19, 10, 0, 0}; 

on_beeper(two_beeps); 

Return Value None 

Remarks This routine specifies a beep sequence to instruct how a buzzer works.  

If there is a beep sequence already in progress, the later will override the 
original one. 

 

play   

Purpose To play melody by specifying a sequence of how a buzzer works. 

Syntax void play (const char *sequence); 

Parameters char *sequence 

Pointer to a buffer where a melody sequence is stored. 
 

Example const char song [] = {0x31, 10, 0x32, 10, 0x33, 10, 0x34, 10, 

                          0x35, 10, 0x36, 10, 0x37, 10, 0x41, 10, 

                          0x31, 4, 0x32, 4, 0x33, 4, 0x34, 4,              

                          0x35, 4, 0x36, 4, 0x37, 4, 0x41, 4, 0x00, 0x00} ;

play(song); 
 



66 

 

CipherLab C Programming Guide 

 

Return Value None 

Remarks This routine is similar to on_beeper(). However, the frequency character is 
specified as: 

Bit 7 6 5 4 3 2 1 0 

Frequency for A (La) Scale # key Musical Scale  Reserved 

 000: Reserved 

001(1): 55 Hz 

010(2): 110 Hz 

011(3): 220 Hz 

100(4): 440 Hz 

101(5): 880 Hz 

110(6): 1760 Hz 

111(7): 3520 Hz 

0: disable 

1: enable 

 

000: Reserved 

001(1): Do 

010(2): Re 

011(3): Mi 

100(4): Fa 

101(5): So 

110(6): La 

111(7): Ti 
 

 

set_beeper_vol  8400 

Purpose To set the volume of beeper. 

Syntax void set_beeper_vol (int level); 

Parameters int level  

1 LOW_VOL Set the volume level to “Low” 

2 MEDIUM_VOL Set the volume level to “Medium” 

3 HIGH_VOL Set the volume level to “High” 
 

Example set_beeper_vol(1);              // set the volume level to “Medium” 

Return Value None 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



  67 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.6 LED INDICATOR 

In general, the dual-color LED indicator or indicators on the mobile computer are used to 
indicate the system status, such as good read or bad read, error occurrence, etc. 

set_led   

Purpose To set the LED operation mode. 

Syntax void set_led (int led, int mode, int duration); 

Parameters int led  

0 LED_RED Red LED light in use. 

1 LED_GREEN Green LED light in use. 

2 LED_BLUE Blue LED light in use for the 2nd LED on 8400, which is 
used for wireless communications by default. 

3 LED_GREEN2 Green LED light in use for the 2nd LED on 8400, which 
is used for wireless communications by default. 

int mode  

0 LED_OFF Off for (duration * 0.01) seconds and then on 

1 LED_ON On for (duration * 0.01) seconds and then off 
2 LED_FLASH Flash, turn on and then off for (duration *0.01) 

seconds. Then repeat. 

0xf0 LED_SYSTEM
_CTRL 

Default setting for the 2nd LED on 8400.  

 For LED_BLUE, it is set to indicate Bluetooth 
status: flashing quickly for “waiting for connection” 
or “connecting”; flashing slowly for “connected”. 

 For LED_GREEN2, it is set to indicate Wi-Fi status: 
flashing quickly for “waiting for connection” or 
“connecting”; flashing slowly for “connected”. 

0xf1 LED_USER_ 
CTRL 

Used for the 2nd LED on 8400 if user control is desired. 
See example below. 

int duration 

Specify duration in units of 10 milli-seconds.  

 This parameter is ignored when the 2nd parameter is LED_SYSTEM_CTRL 
or LED_USER_CTRL.  

Example set_led(LED_RED, LED_FLASH, 50);              

                         // set red LED to flash for each 1 second cycle

set_led(LED_BLUE, LED_USER_CTRL, 0); 

set_led(LED_BLUE, LED_FLASH, 20); // set blue LED on 8400 for user control

Return Value None 

 
 
 
 
 



68 

 

CipherLab C Programming Guide 

 

2.7 VIBRATOR & HEATER 

This section describes the routines for configuring the vibrator and heater. 

 Vibrator: It can be used for status indication. 

 Heater: It is used to ensure the LCD functions well even in very cold weather when 
the environmental temperature falls below -10 Celsius degrees. 

 

2.7.1 VIBRATOR 

The vibrator function is currently supported on 8300/8400/8500 Series. 

Note: For 8300 Series, the hardware version must be 4. 
 

GetVibrator  8300, 8400, 8500 

Purpose To get the status of the vibrator. 

Syntax int GetVibrator (void); 

Example val = GetVibrator(); 

Return Value If enabled (On), it returns 1. 

Otherwise, it returns 0. 
 

SetVibrator  8300, 8400, 8500 

Purpose To set the vibrator. 

Syntax void SetVibrator (int mode); 

Parameters int mode  

0  Turn off the vibrator 

1  Turn on the vibrator 
 

Example SetVibrator(1);                                     // turn on the vibrator

Return Value None 

Remarks Once the vibrator is enabled by SetVibrator(1), it will automatically start 
vibrating until the vibrator is turned off by SetVibrator(0). 

 
 
 
 



  69 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.7.2 HEATER 

GetHeaterMode 8500 

Purpose To get the status of the heater. 

Syntax int GetHeaterMode (void); 

Example mode = GetHeaterMode(); 

Return Value If enabled (On), it returns 1.  

Otherwise, it returns 0. 

Remarks This routine checks the heating functionality. 
 

SetHeaterMode  8500 

Purpose To set the heater. 

Syntax void SetHeaterMode (int mode); 

Parameters int mode  

0  Turn off the heater 

1  Turn on the heater 
 

Example SetHeaterMode(1);                  // turn on the heater 

Return Value None 

Remarks Once the heating functionality is enabled by SetHeaterMode(1) and the 
environmental temperature falls below -10 Celsius degrees, it will automatically 
start heating until the heater is turned off by SetHeaterMode(0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



70 

 

CipherLab C Programming Guide 

 

2.8 REAL-TIME CLOCK 

This section describes the calendar and timer manipulation routines.  

2.8.1 CALENDAR 

The system date and time are maintained by the calendar chip, and they can be retrieved 
from or set to the calendar chip by the get_time() and set_time() functions. A backup 
rechargeable Lithium battery keeps the calendar chip running even when the power is 
turned off. 

 The calendar chip automatically handles the leap year. The year field set to the 
calendar chip must be in four-digit format. 

Note: The system time variable sys_msec and sys_sec is maintained by CPU timers 
and has nothing to do with this calendar chip. Accuracy of these two time variables 
depends on the CPU clock and is not suitable for precise time manipulation. They 
are reset to 0 upon powering up. 

DayOfWeek   

Purpose To get the day of the week information. 

Syntax int DayOfWeek (void); 

Example day = DayOfWeek(); 

Return Value The return value can be 1 ~ 7. 

Remarks This routine returns the day of the week information based on the current date. 

Return  

1 ~ 6 Monday to Saturday 

7 Sunday 
 

 

get_time   

Purpose To get the current date and time from the calendar chip. 

Syntax void get_time (char *cur_time); 

Parameters char *cur_time 

Pointer to a buffer where the system date and time is stored. 

 The character array cur_time allocated must have a minimum of 15 bytes 
to accommodate the date, time, and the string terminator.  

 The format of the system date and time is “YYYYMMDDhhmmss”.  
Example get_time(system_time); 

Return Value None 

 

 
 



  71 

 

 Chapter 2  Mobile-Specific Function Library 

 

set_time   

Purpose To set new date and time to the calendar chip. 

Syntax int set_time (char *new_time); 

Parameters char *new_time 

Pointer to a buffer where the new date and time is stored. 

 The character array new_time allocated must have a minimum of 15 
bytes to accommodate the date, time, and the string terminator.  

 The format of the system date and time is “YYYYMMDDhhmmss”. 

YYYY year 4 digits  

MM month 2 digits, 01 ~ 12 

DD day 2 digits, 01 ~ 31 

hh hour 2 digits, 00 ~ 23 

mm minute 2 digits, 00 ~ 59 

ss second 2 digits, 00 ~ 59 
  

Example set_time(“20050805125800”);                // AUGUST 5, 2005 12:58:00 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. (= Malfunctioning of calendar chip or wrong format) 

Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and 
the system time remains unchanged. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



72 

 

CipherLab C Programming Guide 

 

2.8.2 ALARM 

These are applicable to 8000/8400 Series only. 
 

GetAlarm  8000, 8400 

Purpose To get the current alarm time. 

Syntax void GetAlarm (char *cur_time); 

Parameters char *cur_time 

Pointer to a buffer where the alarm time is stored. 

 The character array cur_time allocated must have a minimum of 15 bytes 
to accommodate the date, time, and the string terminator.  

 The format of the alarm date and time is “YYYYMMDDhhmmss”.  
Example GetAlarm(alarm_time); 

Return Value None 
 

SetAlarm  8000, 8400 

Purpose To set the alarm time. 

Syntax void SetAlarm (char *new_time); 

Parameters char *new_time 

Pointer to a buffer where the alarm time is stored. 

 The character array new_time allocated must have a minimum of 15 
bytes to accommodate the date, time, and the string terminator.  

 The format of the alarm date and time is “YYYYMMDDhhmmss”. 

YYYY year 4 digits  

MM month 2 digits, 01 ~ 12 

DD day 2 digits, 01 ~ 31 

hh hour 2 digits, 00 ~ 23 

mm minute 2 digits, 00 ~ 59 

ss second 2 digits, 00 ~ 59 
  

Example SetAlarm(“20050805125800”);                // AUGUST 5, 2005 12:58:00 

Return Value None 

Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and 
the alarm time remains unchanged. 

 
 



  73 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.9 BATTERY & CHARGING 

This section describes the power management functions that can be used to monitor the 
voltage level of the main and backup batteries. The mobile computer is equipped with a 
main battery for normal operation as well as a backup battery for keeping SRAM data 
and time accuracy. 

2.9.1 BATTERY VOLTAGE 

get_vmain   

Purpose To get the voltage level of the main battery, in units of mV. 

Syntax int get_vmain (void); 

Example if (get_vmain() < 2200)                           // alkaline battery 

 puts(“Battery is low.”); 

Return Value It returns the voltage reading (milli-volt). 
 

get_vbackup   

Purpose To get the voltage level of the backup battery, in units of mV. 

Syntax int get_vbackup (void); 

Example bat1 = get_vbackup(); 

Return Value It returns the voltage reading (milli-volt). 

 
 
 



74 

 

CipherLab C Programming Guide 

 

2.9.2 CHARGING STATUS 

charger_status   

Purpose To check the charging progress of the main battery. 

Syntax int charger_status (void);  

Example if (charger_status == CHARGE_DONE) 

puts(“Battery is full.”); 

Return Value For 8000/8300 Series, the return value can be one of the following: 

Return Value  

0 CHARGE_STANDBY Not connected to any external power. 

1 CHARGING The battery is being charged. 

2 CHARGE_DONE The battery is fully charged. 

3 CHARGE_FAIL Battery charging fails. 

For 8400 Series, the return value can be one of the following: 

Return Value  

0 CHARGE_STANDBY Not connected to any external power. 

1 CHARGING_5V The battery is being charged via 5V power cord. 

2 CHARGE_DONE The battery is fully charged. 

3 CHARGE_FAIL Battery charging fails. 

17 CHARGING_USB The battery is being charged via USB. 

For 8500 Series, the return value can be one of the following: 

Return Value  

0 CHARGING The battery is being charged. 

1 CHARGE_DONE The battery is fully charged. 

2 CHARGE_FAIL Battery charging fails. 

3 CHARGE_STANDBY Not connected to any external power. 
 

See Also GetUSBChargeCurrent, SetUSBChargeCurrent 

 

 

 

 

 

 

 



  75 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetUSBChargeCurrent 8400 

Purpose To get the charging current via USB port on 8400. 

Syntax int GetUSBChargeCurrent (void) ; 

Example val = GetUSBChargeCurrent();                       // get charging setting 

Return Value The return value can be either 0 or 1. 
 

SetUSBChargeCurrent 8400 

Purpose To set the charging current via USB port on 8400. 

Syntax void SetUSBChargeCurrent (int current_type) ; 

Parameters int current_type  

0 CURRENT_500mA Set the charging to 500 mA. 
1 CURRENT_100mA Set the charging to 100 mA. 

 
Example SetUSBChargeCurrent(CURRENT_500mA);        // set 500 mA for USB charging

Return Value None 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 



76 

 

CipherLab C Programming Guide 

 

2.10 KEYPAD 

The background routine constantly scans the keypad to check if any key is being pressed. 
There is a keyboard buffer of size 32 bytes. However, if the buffer is full, the keystrokes 
followed will be ignored. 

 Normally, a C program needs constantly to check if any keystroke is available in the 
buffer. 

 

2.10.1 GENERAL 

CheckKey   

Purpose To detect whether the specified keys have been pressed simultaneously or not. 

Syntax int CheckKey (const int scan_code,...); 

Parameters Specify the scan codes of the keys as many as you like, but be sure to specify 
the type as the last parameter. There are two types: 

 int LastIsType  

-1 CHK_EXC Exclusive checking – only the keys being pressed match the 
keys specified, will the function return 1. 

-2 CHK_INC Inclusive checking – as long as the keys being pressed 
include the keys specified, this function will return 1. 

 
Example while (1) 

{ 

if (CheckKey(SC_1, SC_2, SC_3, CHK_EXC)) 

        printf(“The user presses 1, 2, 3 simultaneously.”); 

OSTimeDly(8);                                // delay 8x5 = 40 ms 

} 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. 

Remarks This routine scans the keypad to check if the specified keys are being pressed 
or not. Usually, this is used to detect special key combinations for a special 
purpose.  

Note that it may need up to 40 milli-seconds for the system to scan the whole 
keypad; therefore, two consecutive calls should not be made during the same 
period. If you are not sure how long it may take to run your code between two 
calls, you may call the OSTimeDly routine to ensure the delay is enough. 

See Also OSTimeDly 

 
 
 
 



  77 

 

 Chapter 2  Mobile-Specific Function Library 

 

clr_kb   

Purpose To clear the keyboard buffer. 

Syntax void clr_kb (void); 

Example clr_kb(); 

Return Value None 

Remarks This routine is automatically called by the system upon powering up the mobile 
computer. 

See Also getchar, kbhit 
 

getchar   

Purpose To read one character from the keyboard buffer and then remove it. 

Syntax int getchar (void); 

Example c = getchar(); 

if (c > 0)  

printf(“Key %d pressed.”, c); 

else  

printf(“No key pressed.”); 

Return Value If successful, it returns the character read from the keyboard buffer.  

Otherwise, it returns 0 to indicate the keyboard buffer is already empty. 

Remarks This routine can be used with menu operation to detect a shortcut key being 
pressed, or with touch screen operation to detect a touched item. 

See Also clr_kb, kbhit, putch 
 

GetKBDModifierStatus 

Purpose To get information of the modifier keys (SHIFT/ALT/FN) as well as keypad 
control settings. 

Syntax unsigned int GetKBDModifierStatus (void); 

Example state = GetKBDModifierStatus(); 

Return Value An unsigned integer is returned, summing up values of each item. 

Remarks Each bit indicates a certain item, and its value can be 0 or 1. 

Bit Item Remarks 

0 Power key 0: Disable, 1: Enable 

1 FN modification (= function mode) 0: Disable, 1: Enable  

2 FN toggle 0: Auto Resume mode,  

1: Toggle mode 

3 LCD contrast control:  

FN + Up/Down (8000/8300/8500) 

Backlight key + Left/Right (8400) 

0: Disable, 1: Enable  

 
 
 



78 

 

CipherLab C Programming Guide 

 

 4 SHIFT modification 0: Disable, 1: Enable  

5 FN as normal key 0: Disable, 1: Enable  

6 SHIFT as normal key 0: Disable, 1: Enable  

7 ALT as normal key 0: Disable, 1: Enable  

8 ALT modification 0: Disable, 1: Enable  

9 LCD backlight control:      

FN + Left/Right (8500) 

Backlight key + Up/Down (8400) 

0: Disable, 1: Enable  

10 Multi-Key mode 0: Disable, 1: Enable 

11 Backlight key as normal key (8400 only) 0: Disable, 1: Enable 

12 Status of F9~F20 (8400, 29-key only) 0: Disable, 1: Enable 

For 8000/8300 Series, it returns 9 to indicate the following items are enabled 
by default: 

 Bit 0 – Power key enabled 

 Bit 3 – LCD contrast control enabled 

For 8400/8500 Series, it returns 0x209 to indicate the following items are 
enabled by default: 

 Bit 0 – Power key enabled 

 Bit 3 – LCD contrast control enabled 

 Bit 9 – LCD backlight control enabled 

See Also get_shift_lock_state, GetAltKeyState, GetFuncExtKey, GetFuncToggle, 
set_shift_lock, SetAltKey, SetFuncExtKey, SetFuncToggle, SetPwrKey 

 

GetKeyClick   

Purpose To get the current setting of key click. 

Syntax int GetKeyClick (void); 

Example state = GetKeyClick(); 

Return Value If key click is enabled, it returns 1~5 to indicate different tones. 

Otherwise, it returns 0. 

Remarks The key click is set to be enabled by default, but it can be changed from 
System Menu or through programming. 

See Also SetKeyClick 
 

kbhit   

Purpose To check whether there is any key being pressed or not. 

Syntax int kbhit (void); 

Example for (;!kbhit(););                          // wait till a key is pressed

Return Value If any key is pressed, it returns 1 to indicate a character is put in the keyboard 
buffer. 

Otherwise, it returns 0 to indicate the buffer is empty. 

See Also clr_kb, getchar 
 
 
 



  79 

 

 Chapter 2  Mobile-Specific Function Library 

 

putch  8400, 8500 

Purpose To put one character to the keyboard buffer. 

Syntax void putch (unsigned char c); 

Parameters unsigned char c 

A character to be put into the keyboard buffer. 
 

Example putch(KEY_ESC);                // put ESC key value to keyboard buffer

Return Value If successful, it returns the character read from the keyboard buffer.  

Otherwise, it returns a null character (0x00) to indicate the buffer if empty. 

Remarks This routine provides the capability to simulate the keypad operation.  

For example, it can be implemented with touch screen operation. The key value 
of a touched item, which is designed as a key on the screen, can be put to the 
keyboard buffer by putch. It can then be detected by using getchar(). 

See Also clr_kb, getchar 
 

SetKeyClick   

Purpose To set the key click. 

Syntax void SetKeyClick (int status); 

Parameters int status  

0 Disable the key click. 

1 ~ 5 Enable the key click; each stands for a specific tone. 
 

Example SetKeyClick(1);                             // enable key click sound 

Return Value None 

Remarks The key click is set to be enabled by default, but it can be changed from 
System Menu or through programming. Moreover, the frequency and duration 
pair of the key click is held in the system global variable KEY_CLICK, which can 
be used to generate the key click sound. For example, 

on_beeper(KEY_CLICK); 

See Also GetKeyClick, KEY_CLICK 
 

TriggerStatus   

Purpose To check whether the SCAN key has been pressed or not. 

Syntax int TriggerStatus (void); 

Example if (TriggerStatus()) 

printf(“Scan key is pressed.”); 

Return Value If the SCAN key is pressed, it returns 1. 

Otherwise, it returns 0. 
 

 
 
 
 
 
 



80 

 

CipherLab C Programming Guide 

 

2.10.2 ALPHA KEY 

dis_alpha   

Purpose To disable the ALPHA key. 

Syntax void dis_alpha (void); 

Example dis_alpha(); 

Return Value None 

Remarks This routine disables the ALPHA key and sets the input mode to numeric only.  

 The same result can be obtained from LockAlphaState(0). 
 

en_alpha   

Purpose To enable or unlock the ALPHA key. 

Syntax void en_alpha (int type) ; 

Parameters int type  

1 ALPHA_FIXED It shows only one character when pressing 
one key. The character displayed depends on 
the current input mode. 

2 ALPHA_ROLLING It takes turns to show alphabets and number 
when pressing the same key; the time interval 
between each press must not exceed one 
second. For example, the “2ABC” key can 
generate “A”, “B”, “C” or “2” by turns within 
one second. 

For 8300, 39-key: 

It takes turns to show alphabets and number 
when pressing the same key; the time interval 
between each press must not exceed one 
second. For example, the “2B” key can 
generate “B” and “2” by turns. 

 
Example en_alpha(); 

Return Value None 

Remarks By default, the input mode is numeric and can be modified by the ALPHA key.  

 If the ALPHA key is disabled by dis_alpha(), this routine is used to enable 
it. 

 If the ALPHA key is locked by LockAlphaState(), this routine is used to 
unlock it.  

The type of behavior can be specified ALPHA_FIXED or ALPHA_ROLLING for 
8300 Series, 39-key. 

The type of behavior must be set to ALPHA_ROLLING for the following mobile 
computers: 

 8000 Series 

 8300 Series, 24-key 

 8400 Series, 29-key 

 8500 
 



  81 

 

 Chapter 2  Mobile-Specific Function Library 

 

 The type of behavior must be set to ALPHA_FIXED for the following mobile 
computers: 

 8400 Series, 39-key 
 

get_alpha_enable_state  

Purpose To get the state of the ALPHA key. 

Syntax int get_alpha_enable_state (void); 

Example state = get_alpha_enable_state(); 

Return Value The return value can be one of the following: 

Return Value  

-1  No ALPHA key available on 8500, 44-key (Type I). 

0  The ALPHA key is disabled, resulting from dis_alpha() and 
LockAlphaState(). 

1  The ALPHA key is enabled and the keypad behavior is set to 
ALPHA_FIXED, resulting from en_alpha(). 

2  The ALPHA key is enabled and the keypad behavior is set to 
ALPHA_ROLLING, resulting from en_alpha(). 

 
Remarks By default, the ALPHA key is enabled. 

 

get_alpha_lock_state  

Purpose To get information of the ALPHA state for input mode, locked or unlocked. 

Syntax int get_alpha_lock_state (void); 

Example state = get_alpha_lock_state(); 

Return Value The return value can be one of the following: 

Return Value  

-1  No ALPHA key available on 8500, 44-key (Type I). 

0  Numeric mode 

1  Upper case alpha mode 

2  Lower case alpha mode 
3  Function mode (8000 only) 

 
Remarks This routine gets the current state of input mode, resulting from either 

LockAlphaState() or set_alpha_lock(). 

 
 
 
 
 
 
 
 
 
 
 
 



82 

 

CipherLab C Programming Guide 

 

LockAlphaState   

Purpose To set the ALPHA state for input mode and lock (= disable) the ALPHA key. 

Syntax void LockAlphaState (int state); 

Parameters int state  

0 NUMERIC_KAYPAD Locked to numeric mode 
1 UPPER_CASE Locked to upper case alpha mode 
2 LOWER_CASE Locked to lower case alpha mode 
3 FUNCTION_KEY Locked to function mode (8000 only) 

 
Example LockAlphaState(2);        // lower case alpha mode, ALPHA key disabled

Return Value None 

Remarks This routine specifies the input mode, which cannot be modified by the ALPHA 
key. 

 

set_alpha_lock   

Purpose To set the ALPHA state for input mode, unlocked. 

Syntax void set_alpha_lock (int state); 

Parameters int state  

0  Enable numeric mode 
1  Enable upper case alpha mode 
2  Enable lower case alpha mode 
3  Enable function mode (8000 only) 

 
Example set_alpha_lock(1);         // upper case alpha mode, ALPHA key enabled

Return Value None 

Remarks This routine sets the input mode, which can be modified by the ALPHA key.  

 If the ALPHA key is disabled by dis_alpha() or locked by LockAlphaState(), 
use en_alpha() to enable (= unlock) it. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



  83 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.10.3 SHIFT KEY 

The SHIFT key is a modifier key that converts the alphabets from upper case to lower 
case. Here are the functions to set or get its status.  

Note: The SHIFT key is available on the 8500 44-key (Type I) mobile computer only.  
 

get_shift_lock_state 8500 

Purpose To get the SHIFT state. 

Syntax int get_shift_lock_state (void); 

Example state = get_shift_lock_state(); 

Return Value The return value can be 0 ~ 3. However, it returns -1 for 8500 Series 24-key 
and 44-TE key (Type II) because of no SHIFT key. 

 

set_shift_lock  8500 

Purpose To set the SHIFT state, unlocked. 

Syntax void set_shift_lock (int state); 

Parameters int state  

0  Disable SHIFT modification                               (default) 
1  Enable SHIFT modification  
2  Disable SHIFT modification + SHIFT as normal key 
3  Enable SHIFT modification + SHIFT as normal key 

 
Example set_shift_lock(0);                             // No SHIFT modification 

Return Value None 

Remarks This routine sets the SHIFT state, which can be modified by the SHIFT key. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



84 

 

CipherLab C Programming Guide 

 

2.10.4 ALT KEY 

The ALT key serves as a modifier key. Here are the functions to set or get its status. 

Note: The ALT key is available on the 8500 44-key (Type I) or 44-TE (Type II) key 
mobile computer. 

 

GetAltKeyState  8500 

Purpose To get the ALT state. 

Syntax int GetAltKeyState (void); 

Example state = GetAltKeyState(); 

Return Value The return value can be 0 ~ 3. However, it returns -1 for 8500 Series 24-key 
because of no ALT key. 

 

SetAltKey  8500 

Purpose To set the ALT state. 

Syntax void SetAltKey (int state); 

Parameters int state  

0  Disable ALT modification                                 (Default) 
1  Enable ALT modification   
2  Disable ALT modification + ALT as normal key 
3  Enable ALT modification + ALT as normal key 

 
Example SetAltKey(0)                                     // No ALT modification 

Return Value None 

Remarks This routine sets the ALT state, which can be modified by the ALT key. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  85 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.10.5 FN KEY 

The function (FN) key serves as a modifier key used to produce a key combination.  

1) To enable this modifier key, press the function (FN) key on the keypad, and the 

status icon “ ” will be displayed on the screen. 

2) Press another key to get the value of the key combination (say, F1), and the status 
icon will go off immediately when the function (FN) key is set to Auto Resume mode 
by SetFuncToggle(). That is, this modifier key can work one time only. 

3) To get the value of another key combination, repeat the above steps. 

However, on condition that the function (FN) key is set to Toggle mode by 
SetFuncToggle(), this modifier key can work as many times as desired until it is 
pressed again to exit the function mode. 
 

GetFuncToggle  8300, 8400, 8500 

Purpose To get information of the FN toggle state. 

Syntax int GetFuncToggle (void); 

Example state = GetFuncToggle(); 

Return Value The return value can be 0 ~ 1 for 8300 Series. 

The return value can be 0 ~ 4, and 6 for 8400 Series, 29-key and 39-key. 

The return value can be 0 ~ 3 for 8500 Series, 24-key and 44-key (Type I). 

The return value can be 0 ~ 4, and 6 for 8500 Series, 44-TE key (Type II). 
 



86 

 

CipherLab C Programming Guide 

 

SetFuncToggle  8300, 8400, 8500 

Purpose To set the state of the FN (function) toggle. 

Syntax void SetFuncToggle (int state); 

Parameters For 8300 Series, 24-key and 39-key: 

int state  

0  Auto Resume mode + Multi-Key mode                   (default) 
1  Toggle mode + Multi-Key mode 

For (1) 8400 Series, 24-key and 39-key (2) 8500 Series, 44-key Type II: 

int state  

0  Auto Resume mode + Multi-Key mode                   (default) 
1  Toggle mode + Multi-Key mode 
2  Auto Resume mode + Multi-Key mode + FN as normal key  
3  Toggle mode + Multi-Key mode + FN as normal key 

4  Multi-Key mode                                           

6  Multi-Key mode + FN as normal key 

For 8500 Series, 24-key and 44-key Type I: 

int state  

0  Auto Resume mode + Multi-Key mode                   (default) 
1  Toggle mode + Multi-Key mode 
2  Auto Resume mode + Multi-Key mode + FN as normal key  
3  Toggle mode + Multi-Key mode + FN as normal key 

4  No effect                                           
 

  Auto Resume mode — The function mode is toggled on by pressing the 
function key; it is toggled off by pressing the second key of the key 
combination. A status icon is displayed on the screen to indicate the status. 

 Toggle mode — The function mode is toggled on by pressing the function 
key; it can only be toggled off by pressing the function key again. A status 
icon is displayed on the screen to indicate the status. 

 Multi-Key mode — For any key combination, it requires pressing two keys 
at the same time, or holding down the function key followed by the second 
key. 

 FN as normal key — The function key is treated as a normal key. 

Example SetFuncToggle(0)   // set the FN state to Auto Resume and Multi-Key mode 

Return Value None 

 
 
 
 
 
 



  87 

 

 Chapter 2  Mobile-Specific Function Library 

 

EXTENDED FUNCTION KEYS FOR 8400, 29-KEY 

By default, F1~F8 are available on 8400 Series, 29-key. However, you may use key 
combinations for F9~F20 after SetFuncExtKey(1) is called. 

GetFuncExtKey  8400 

Purpose To check whether the extended function keys F9~F20 are enabled on 8400, 
29-key.  

Syntax int GetFuncExtKey (void); 

Example state = GetFuncExtKey; 

Return Value If enabled, it returns 1. 

Otherwise, it returns 0. 
 

SetFuncExtKey 8400 

Purpose To set the state of extended function keys F9~F20 on 8400, 29-key. 

Syntax void SetFuncExtKey (int state) ; 

Parameters int state  

0 Disable F9~F20 on 29-key 8400 

1 Enable F9~F20 on 29-key 8400 
 

Example SetFuncExtKey(1);                       // enable key combinations F9~F20 

Return Value None 

Remarks Depending on the state of the FN (function) toggle, the following key 
combinations are used for F9~F20. 

Orange key (FN) + Number/Symbol key Result 

FN + [-] F9 

FN + [.] F10 

FN + [1] F11 

FN + [2] F12 

FN + [3] F13 

FN + [4] F14 

FN + [5] F15 

FN + [6] F16 

FN + [7] F17 

FN + [8] F18 

FN + [9] F19 

FN + [0] F20 
 

See Also SetFuncToggle 
 

 
 
 
 
 



88 

 

CipherLab C Programming Guide 

 

2.11 LCD 

The liquid crystal display (LCD) on the mobile computer is FSTN graphic display. The 
display capability may vary due to the size of LCD panel. A coordinate system is used for 
the cursor movement routines to determine the cursor location — (x, y) indicates the 
column and row position of cursor. The coordinates given to the top left point is (0, 0), 
while those of the bottom right point depends on the size of LCD and font. For displaying 
a graphic, the coordinate system is on dot (pixel) basis.  

Series Screen Size Top_Left (x, y) Bottom_Right (x, y) 

8000 100 x 64 dots (0, 0) (99, 63) 

8300 128 x 64 dots (0, 0) (127, 63) 

8400 160 x 160 dots (0, 0) (159, 159) 

8500 160 x 160 dots (0, 0) (159, 159) 
 

2.11.1 PROPERTIES 

 Contrast: Level 0 ~ 7. It is set to level 4 by default.  

 Backlight: It is turned off by default. The shortcut key [FN] + [Enter] can be used as 
a toggle except for 8400 Series, which has a backlight key instead. 

Note: When the backlight is turned on by pressing [FN] + [Enter] simultaneously, it is 
set to level 2 on 8400/8500 Series. 

DecContrast   

Purpose To decrease the LCD contrast. 

Syntax void DecContrast (void); 

Example DecContrast(); 

Return Value None 

Remarks This routine decreases the LCD contrast by one level each time it is called, and 
the minimum value is 0. 

See Also GetContrast, IncContrast, SetContrast, SetContrastControl 
 

GetContrast   

Purpose To get the contrast level of the LCD. 

Syntax void GetContrast (void); 

Example int nContrastLevel = GetContrast();   

Return Value It returns the current contrast level, ranging from 0 to 7. 

Remarks This routine indicates the current contrast level of the LCD, which is set to 4 by 
default. 

See Also DecContrast, IncContrast, SetContrast, SetContrastControl 
 



  89 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetVideoMode   

Purpose To get the display mode of the LCD. 

Syntax int GetVideoMode (void); 

Example if (GetVideoMode() == VIDEO_NORMAL) 

puts(“Normal Mode”);     

Return Value Return Value  

0 VIDEO_NORMAL Normal mode in use 

1 VIDEO_REVERSE Reverse mode in use 
 

Remarks This routine indicates the current display mode of the LCD. 

See Also SetVideoMode 
 

IncContrast   

Purpose To increase the LCD contrast. 

Syntax void IncContrast (void); 

Example IncContrast(); 

Return Value None 

Remarks This routine increases the LCD contrast by one level each time it is called, and 
the maximum value is 7. 

See Also DecContrast, GetContrast, SetContrast, SetContrastControl 
 

lcd_backlit   

Purpose To set the LCD backlight. 

Syntax void lcd_backlit (int state); 

Parameters For 8000/8300 Series, the parameter state can be one of the following: 

int state  

0 BKLIT_OFF Backlight off 
1 BKLIT_LO Backlight on 

For 8400 Series, the parameter state can be one of the following: 

int state  

0x0000 BKLIT_OFF Backlight off 
0x0001 BKLIT_VERY_LO Backlight with very low luminosity 

0x0002 BKLIT_LO Backlight with low luminosity 
0x0003 BKLIT_MED Backlight with medium luminosity 
0x0004 BKLIT_HI Backlight with high luminosity 

0x0010 BKLIT_SHADE_OFF Backlight shade effect off 
0x0011 BKLIT_SHADE _VL Backlight with very little shade effect 

0x0012 BKLIT_SHADE _LO Backlight with little shade effect 
0x0013 BKLIT_SHADE _MED Backlight with medium shade effect 
0x0014 BKLIT_SHADE _HI Backlight with high shade effect 

 
 



90 

 

CipherLab C Programming Guide 

 

 For 8500 Series, the parameter state can be one of the following: 

int state  

0 BKLIT_OFF Backlight off 
1 BKLIT_VERY_LO Backlight with very low luminosity 

2 BKLIT_LO Backlight with low luminosity 
3 BKLIT_MED Backlight with medium luminosity 
4 BKLIT_HI Backlight with high luminosity 

 
Example lcd_backlit(1);                  // turn on LCD backlight, low density 

Return Value None 

Remarks This routine toggles the LCD backlight depending on the value of state.  

 The system global variable BKLIT_TIMEOUT can be used to specify the 
backlight duration in units of second. However, if the value of 
BKLIT_TIMEOUT is zero, it means that the backlight will be on until it is 
either turned off manually or its state is set to BKLIT_OFF. 

See Also BKLIT_TIMEOUT, SetBklitControl 
 
 

SetBklitControl  8400, 8500 

Purpose To provide the use of combination keys to control the LCD backlight. 

Syntax void SetBklitControl (int mode); 

Parameters For 8400 Series, the parameter can be one of the following: 

int mode 
(the backlight key is  for 29-key and  for 39-key) 

0  Key combination [Backlight] + [↑]/[↓] disabled 

1  Key combination [Backlight] + [↑]/[↓] enabled 

2  Key combination [Backlight] + [↑]/[↓] disabled 

+ Backlight key as normal key 
3  Key combination [Backlight] + [↑]/[↓] enabled 

+ Backlight key as normal key 

For 8500 Series, the parameter can be one of the following: 

int mode  

0  Key combination FN + [←]/[→] disabled  

1  Key combination FN + [←]/[→] enabled  
Example SetBklitControl(0);            

// disable the key combination for Backlight Control  

Return Value None 

Remarks This routine determines whether the LCD backlight can be adjusted by pressing 
the combination keys. 

 When enabled on 8400 Series, press [Backlight] + [↑] simultaneously for 
higher luminosity and [Backlight] + [↓] simultaneously for lower 
luminosity. 

 



  91 

 

 Chapter 2  Mobile-Specific Function Library 

 

  When disabled on 8400 Series, the key values KEY_BUP or KEY_BDOWN 
will be stored in keyboard buffer. 

 For 8400, Backlight key as normal key — The key is treated as a normal 
key. 

 When enabled on 8500 Series, press FN + [→] simultaneously for higher 
luminosity and FN + [←] simultaneously for lower luminosity. 

 When disabled on 8500 Series, the key values KEY_FLEFT or KEY_FRIGHT 
will be stored in keyboard buffer. 

See Also lcd_backlit 
 

SetContrast   

Purpose To set the contrast level of the LCD. 

Syntax void SetContrast (int level); 

Example SetContrast(4); 

Return Value None 

Remarks This routine specifies the contrast level of the LCD, and the valid value ranges 
from 0 (low) to 7 (high). 

See Also DecContrast, GetContrast, IncContrast, SetContrastControl 
 

SetContrastControl  

Purpose To provide the use of combination keys to control the LCD contrast. 

Syntax void SetContrastControl (int mode); 

Parameters For 8000/8300/8500 Series, the parameter can be one of the following: 

int mode  

0  Key combination FN + [↑]/[↓] disabled 
(For 8500 44-TE key, FN + [3]/[6] disabled) 

1  Key combination FN + [↑]/[↓] enabled 

(For 8500 44-TE key, FN + [3]/[6] enabled) 

For 8400 Series, the parameter can be one of the following: 

int mode 
(the backlight key is  for 29-key and  for 39-key) 

0  Key combination [Backlight] + [←]/[→] disabled 
(For 39-key, also FN + [0]/[‧] disabled) 

1  Key combination [Backlight] + [←]/[→] enabled 

(For 39-key, also FN + [0]/[‧] enabled) 
 

Example SetContrastControl(0);  

// disable the key combination for Contrast Control  

Return Value None 

Remarks This routine determines whether the LCD contrast can be adjusted by pressing 
the combination keys.  

 



92 

 

CipherLab C Programming Guide 

 

  When enabled on 8000/8300/8500 Series, press FN + [↑] simultaneously 
for higher contrast and FN + [↓] simultaneously for lower contrast. 

 When disabled on 8000/8300/8500 Series, the key values KEY_FUP or 
KEY_FDOWN will be stored in keyboard buffer. 

 When enabled on 8400 Series, press [Backlight] + [→] simultaneously for 
higher contrast and [Backlight] + [←] simultaneously for lower contrast. 

 When disabled on 8400 Series, the key values KEY_BLEFT or KEY_BRIGHT 
will be stored in keyboard buffer. 

See Also DecContrast, GetContrast, IncContrast, SetContrast 
 

SetVideoMode   

Purpose To set the display mode of the LCD. 

Syntax void SetVideoMode (int mode); 

Parameters int mode  

0 VIDEO_NORMAL Normal mode in use 
1 VIDEO_REVERSE Reverse mode in use  

Example SetVideoMode(VIDEO_REVERSE);                // set reverse video mode 

Return Value None 

Remarks This routine determines the display mode of the LCD. 

See Also GetVideoMode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  93 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.11.2 CURSOR 

GetCursor   

Purpose To check whether the cursor indication on the LCD is visible (On) or not (Off). 

Syntax int GetCursor (void); 

Example if (GetCursor() == 0)  

puts(“Cursor Off”); 

Return Value If visible, it returns 1. 

Otherwise, it returns 0. 

See Also SetCursor 
 

gotoxy   

Purpose To move the cursor to a new position. 

Syntax void gotoxy (int x_position, int y_position); 

Parameters int x_position  

X coordinate of the new cursor position desired. 
int y_position 

Y coordinate of the new cursor position desired.  
Example gotoxy(10, 0) 

                 // move the cursor to the 11th column of the first line

Return Value None 

Remarks This routine moves the cursor to a new position whose (X, Y) coordinates are 
specified in the argument x_position and y_position. 

Depending on the following elements, the maximum values for coordinates are 
limited: 

 The printing of characters in the icon area, which is determined by 
ICON_ZONE(). 

 The size of LCD. 

 The font file in use. 

For 8500 Series, the y coordinate cannot be over 18 with font size 6x8 and 
ICON_ZONE(0) is given. 

See Also wherexy 
 
 
 



94 

 

CipherLab C Programming Guide 

 

SetCursor   

Purpose To determine whether the cursor indication on the LCD is visible (On) or not 
(Off). 

Syntax void SetCursor (int cursor); 

Parameters int cursor  

0 CURSOR_OFF Hide cursor (Off) 
1 CURSOR_ON Display cursor (On)  

Example SetCursor(0);                       // turn off the cursor indication 

Return Value None 

See Also GetCursor 
 

wherex   

Purpose To get the X coordinate of the current cursor (column position). 

Syntax int wherex (void); 

Example x_position = wherex(); 

Return Value It returns the X coordinate. 

See Also wherexy, wherey 
 

wherexy   

Purpose To get the (X, Y) coordinates of the current cursor (row position). 

Syntax void wherexy (int *column, int *row); 

Parameters int *column  

Pointer to a buffer where the X coordinate is stored. 
int *row 

Pointer to a buffer where the Y coordinate is stored.  
Example wherexy(&x_position, &y_position); 

Return Value None 

Remarks This routine copies the values of column and row for the current cursor position 
to the variables whose addresses are specified in the arguments column and 
row. 

See Also gotoxy, wherex, wherey 
 

wherey   

Purpose To get the Y coordinate of the current cursor (row position). 

Syntax int wherey (void); 

Example y_position = wherey(); 

Return Value It returns the Y coordinate. 

See Also wherex, wherexy 
 



  95 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.11.3 DISPLAY 

fill_rect   

Purpose To fill a rectangular area on the LCD. 

Syntax void fill_rect (int left, int top, int width, int height); 

Parameters int left, top  

(X, Y) coordinates of the upper left corner of the rectangle. 
int width 

Width of the rectangle to be filled, in dots. 
int height 

Height of the rectangle to be filled, in dots.  
Example fill_rect(12, 8, 40, 8); 

Return Value None 

Remarks This routine fills a rectangular area on the LCD whose top left position and size 
are specified by left, top, width, and height.  

 The cursor position is not affected after the operation. 

See Also clr_rect 
 

ICON_ZONE   

Purpose To enable or disable the printing of characters in the icon area. 

Syntax void ICON_ZONE (int mode) ; 

Parameters int mode  

0 ICON_ZONE_DISABLE Show status icons by default (= printing 
disabled) 

1 ICON_ZONE_ENABLE Show characters (= printing enabled)  
Example ICON_ZONE(1); 

Return Value None 

Remarks The icon zone refers to an area on the LCD that is reserved for showing status 
icon, such as the battery icon, alpha icon, etc.  

 By default, the icon zone cannot show characters and is accessed by 
graphic commands only.  

8000 100x64 dots The icon zone occupies the right-most 4x64 dots. 
Yet, 4 pixels’ width cannot hold one character. 
Therefore, even when ICON_ZONE is enabled, the 
display remains to show up to 8 lines * 16 characters 
for 6x8 font, or 4 lines * 12 characters for 8x16 font. 

8300 128x64 dots The icon zone occupies the right-most 8x64 dots. 
When ICON_ZONE is enabled, the display can show 
up to 8 lines * 21 characters for 6x8 font, or 4 lines * 
16 characters for 8x16 font. 

 
 
 
 
 



96 

 

CipherLab C Programming Guide 

 

 8400 160x160 dots The icon zone occupies the bottom line, which takes 
160x16 dots. When ICON_ZONE is enabled, the 
display can show up to 20 lines * 26 characters for 
6x8 font, or 10 lines * 20 characters for 8x16 font. 

8500 160x160 dots The icon zone occupies the bottom line, which takes 
160x8 dots for 6x8 font or 160x16 dots for 8x16 font. 
When ICON_ZONE is enabled, the display can show 
up to 20 lines * 26 characters for 6x8 font, or 10 
lines * 20 characters for 8x16 font. 

For any of the above displays, when ICON_ZONE is enabled, the entire screen 
will be erased after calling clr_scr().  

Note that the system may still show the status icons in this icon area, even 
though ICON_ZONE is enabled. This is because these status icons are 
constantly maintained by the system, and they may override the printing of 
characters from time to time. 

 

printf   

Purpose To write character strings and values of C variables in a specified format to the 
LCD. 

Syntax int printf (char *format, var...); 

Parameters char *format  

Character string that describes the format to be used. 
Var... 

Any variable whose value is being printed on the LCD.  
Example pritnf(“ID:%s”, id_buffer); 

Return Value It returns the character count that sent to the LCD. 

Remarks This routine accepts any variable and prints its value to the LCD. The value of 
each variable is formatted according to the codes embedded in the format 
specification format.  

To print values of C variables, a format specification must be embedded in 
format for each variable to be printed. The format specification for each 
variable has the following form: 

%[flags][width].[precision][size][type] 

Field Explanation 

% 
(required) 

Indicates the beginning of a format specification. Use %% to print 
a percentage sign. 

Flags 
(optional) 

One of more of the ‘-‘, ‘+’, ‘#’ characters or a blank space 
specifies justification, and the appearance of plus/minus signs in 
the values printed. 

- Left justify output value. The default is right justification. 

+ If the output value is a numerical one, print a ‘+’ or ‘-‘ 
character according to the sign of the value. A ‘-‘ 
character is always printed for a negative value no 
matter this flag is specified or not. 

  
 



  97 

 

 Chapter 2  Mobile-Specific Function Library 

 

  Blank Positive numerical values are prefixed with blank spaces. 
This flag is ignored if the + flag also appears. 

# When used in printing variables of type o, x, or X (see 
below), non-zero output values are prefixed with 0, 0x, 
or 0X respectively. 

 
Width 
(optional) 

A number that indicates how many characters, at maximum, 
must be used to print the value. 

Precision 
(optional) 

A number that indicates how many characters, at maximum, can 
be used to print the value. When printing integer variables, this is 
the minimum number of digits used. 

Size 
(optional) 

A character that modifies the type field which comes next. One of 
the characters ‘h’, ‘l’, and ‘L’ can appear in this field to 
differentiate between short and long integers. ‘h’ is for short 
integers, and ‘l’ or ‘L’ for long integers. 

Type 
(required) 

A letter that indicates the type of variable being printed: 

c 

d 

i 

o 

u 

x 

X 

s 

Single character 

signed decimal integer 

signed decimal integer 

Octal digits without sign 

unsigned decimal integer 

Hexadecimal digits using lower case letter 

Hexadecimal digits using upper case letter 

A null terminated character string 
  

 

putchar   

Purpose To display a character on the LCD. 

Syntax int putchar (int c); 

Parameters int c  

The character being sent to the LCD.  
Example putchar(‘A’); 

Return Value It always returns 1. 

Remarks This routine sends a character specified in the argument c to the LCD at the 
current cursor position. The cursor is moved accordingly. 

See Also puts 

 
 
 



98 

 

CipherLab C Programming Guide 

 

puts   

Purpose To display a string on the LCD. 

Syntax int puts (char *string); 

Parameters char *string  

The string being sent to the LCD.  
Example puts(“Password : ”); 

Return Value It returns the character count of the string. 

Remarks This routine sends a string, whose address is specified in the argument string, 
to the LCD at the current cursor position. The cursor is moved accordingly as 
each character of string is sent to the LCD. The operation continues until a 
terminating null character is encountered. 

See Also putchar 
 

WaitHourglass   

Purpose To show a moving hourglass on the LCD. 

Syntax void WaitHourglass (int UppLeftX, int UppLeftY, int type); 

Parameters int UppLeftX, UppLeftY,  

(X, Y) coordinates of the upper left corner of the hourglass. 
int type  

1 HOURGLASS_24x23 24X23 pixels 
2 HOURGLASS_8x8 8x8 pixels 

 
Example while (IsRunning) 

{... 

WaitHourglass(68, 68, HOURGLASS_24x23);    

                           // show the 24x23 hourglass during the loop 

...} 

Return Value None 

Remarks This routine has to be called constantly to maintain its functionality.  

 Five different patterns of an hourglass type take turns to show on the LCD 
at certain intervals, indicating the passage of time.  

 The time factor is decided through programming but no less than two 
seconds. 

See Also clr_rect 
 
 



  99 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.11.4 CLEAR 

clr_eol   

Purpose To clear from where the cursor is to the end of the line, and then move the 
cursor to its original position. 

Syntax void clr_eol (void); 

Example clr_eol(); 

Return Value None 

See Also clr_scr 
 

clr_icon   

Purpose To clear the icon zone on the LCD. 

Syntax void clr_icon (void); 

Example clr_icon(); 

Return Value None 

Remarks The icon zone is an unprintable area reserved for showing some status icons, 
such as the battery icon, antenna, system time, etc. 

  Programmers can show custom icons in this area by using the show_image 
function.  

 When calling clr_scr() to clear the screen, this icon zone won’t be cleared. 
Therefore, if you need to erase the icon zone, you have to call clr_icon(). 

See Also clr_scr 
 

clr_rect   

Purpose To clear a rectangular area on the LCD. 

Syntax void clr_rect (int left, int top, int width, int height); 

Parameters int left, top  

(X, Y) coordinates of the upper left corner of the rectangle. 
int width 

Width of the rectangle to be cleared, in dots. 
int height 

Height of the rectangle to be cleared, in dots.  
Example clr_rect(12, 8, 40, 8); 

Return Value None 

Remarks This routine clears a rectangular area on the LCD whose top left position and 
size are specified by left, top, width, and height.  

 The cursor position is not affected after the operation. 

See Also fill_rect 

 
 



100 

 

CipherLab C Programming Guide 

 

clr_scr   

Purpose To clear everything on the LCD. 

Syntax void clr_scr (void); 

Example clr_scr(); 

Return Value None 

Remarks This routine clears contents of the current screen and places the cursor at the 
first column of the first line — (0, 0). 

See Also clr_eol, clr_icon, clr_rect 

 

 

 
 



  101 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.11.5 IMAGE 

The show_image() function can be used to display images on the LCD. The user needs 
to allocate an unsigned char array to store the bitmap data of the image. This array 
begins with the top row of pixels. Each row begins with the left-most pixels. Each bit of 
the bitmap represents a single pixel of the image. If the bit is set to 1, the pixel is 
marked, and if it is 0, the pixel is unmarked.  

The 1st pixel in each row is represented by the least significant bit of the 1st byte in each 
row. If the image is wider than 8 pixels, the 9th pixel in each row is represented by the 
least significant bit of the 2nd byte in each row.  

The following is an example to show our company logo, and the static unsigned char 
array is used for storing its bitmap data. 

 

static unsigned char CipherLab_logo [] = { 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0xf0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x08, 0x00, 0x00, 
0x00, 0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00, 
0x00, 0xfc, 0xff, 0x0b, 0x80, 0x07, 0x00, 0x00, 0xf4, 0xff, 0x0b, 0xc0, 0xac, 0x93, 0x77, 
0xf4, 0x1d, 0x0b, 0x60, 0xa0, 0x94, 0x90, 0xf4, 0xda, 0x0a, 0x20, 0xa0, 0x94, 0x90, 0xf4, 
0xda, 0x0a, 0x20, 0xa0, 0xf3, 0x77, 0x74, 0x17, 0x0b, 0x60, 0xa8, 0x90, 0x30, 0x74, 0xd0, 
0x0a, 0xc0, 0xac, 0x90, 0x50, 0x74, 0xd7, 0x0a, 0x80, 0xa7, 0x90, 0x97, 0x04, 0x17, 0x0b, 
0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x03, 0x00, 
0x00, 0x00, 0x00, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 0x00}; 
 



102 

 

CipherLab C Programming Guide 

 

get_image   

Purpose To read a bitmap pattern from a rectangular area on the LCD. 

Syntax void get_image (int left, int top, int width, int height, unsigned char 
*pat); 

Parameters int left, top  

(X, Y) coordinates of the upper left corner of the rectangle. 
int width 

Width of the rectangle, in dots. 
int height 

Height of the rectangle, in dots. 
unsigned char *pat 

Pointer to a buffer where bitmap data will be copied to. 
 

Example get_image(12, 32, 60, 16, buf); 

Return Value None 

Remarks This routine copies the bitmap pattern of a rectangular area on the LCD (whose 
top left position and size are specified by left, top, width, and height) to a 
buffer (pat).  

 The cursor position is not affected after the operation. 

See Also show_image 
 

show_image   

Purpose To put a bitmap pattern to a rectangular area on the LCD. 

Syntax void show_image (int left, int top, int width, int height, unsigned char 
*pat); 

Parameters int left, top  

(X, Y) coordinates of the upper left corner of the rectangle. 
int width 

Width of the rectangle, in dots. 
int height 

Height of the rectangle, in dots. 
unsigned char *pat 

Pointer to a buffer where bitmap data is kept for displaying on the LCD.  
Example show_image(35, 5, 52, 24, CipherLab_logo[]); 

Return Value None 

Remarks This routine displays the bitmap pattern from a buffer (pat) to a rectangular 
area on the LCD (whose top left position and size are specified by left, top, 
width, and height).  

 The cursor position is not affected after the operation. 

See Also get_image 
 



  103 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.11.6 GRAPHICS 

A monochrome graphic has three factors as listed in the table. 

Key Factors Parameters Functions 

Video Mode VIDEO_REVERSE 

VIDEO_NORMAL 

1 

0 

See SetVideoMode() 

Pixel State DOT_MARK 

DOT_CLEAR 

DOT_REVERSE 

1 

0 

-1 

See circle(), line(), putpixel() and rectangle() 

Shape State SHAPE_FILL 

SHAPE_NORMAL  

1 

0 

See circle(), rectangle() 

Illustrative examples are given below. 

Shape State Pixel State 

  DOT_MARK  DOT_CLEAR  DOT_REVERSE 

SHAPE_FILL 

 
 

 

SHAPE_NORMAL 

 
  

 

circle    

Purpose To draw a circle on the LCD. 

Syntax void circle (int x, int y, int r, int type, int mode) ; 

Parameters int x, y  

(X, Y) coordinates of the center of a circle. 
int r 

Radius of a circle. 
int type  

0 SHAPE_NORMAL Hollow object 

1 SHAPE_FILLL Solid object 

int mode  

-1 DOT_REVERSE Dot in Reverse mode 
0 DOT_CLEAR Dot being cleared 
1 DOT_MARK Dot being marked  



104 

 

CipherLab C Programming Guide 

 

Example circle(80, 120, 8, SHAPE_FILL, DOT_MARK);  

// show a solid black circle centered at the position of (80,120) with 
radius of 8 pixels 

Return Value None 

See Also line, rectangle 
 

line   

Purpose To draw a line on the LCD. 

Syntax void line (int X1, int Y1, int X2, int Y2, int mode) ; 

Parameters int X1, Y1  

(X, Y) coordinates of the starting point of a line. 
int X2, Y2 

(X, Y) coordinates of the ending point of a line. 
int mode  

-1 DOT_REVERSE Dot in Reverse mode 
0 DOT_CLEAR Dot being cleared 
1 DOT_MARK Dot being marked  

Example line(10, 10, 120, 10, DOT_MARK);               // draw a horizontal line

line(80, 120, 10, 10, DOT_MARK);               // draw an oblique line

Return Value None 

See Also circle, rectangle 
 

putpixel   

Purpose To mark a pixel (or draw a dot) on the LCD. 

Syntax void putpixel (int pos_x, int pos_y, int mode) ; 

Parameters int pos_x, pos_y  

(X, Y) coordinates of a pixel. 

int mode  

-1 DOT_REVERSE Dot in Reverse mode 
0 DOT_CLEAR Dot being cleared 
1 DOT_MARK Dot being marked  

Example putpixel(80, 120, DOT_REVERSE);            

       // mark or clear the dot at (80,120) depending on the pixel status

Return Value None 
 

rectangle   

Purpose To draw a rectangle on the LCD. 

Syntax void rectangle (int X1, int Y1, int X2, int Y2, int type, int mode) ; 

Parameters int X1, Y1  

(X, Y) coordinates of the starting point of a diagonal. 
 

 



  105 

 

 Chapter 2  Mobile-Specific Function Library 

 

 int X2, Y2 

(X, Y) coordinates of the ending point of a diagonal. 
int type  

0 SHAPE_NORMAL Hollow object 

1 SHAPE_FILLL Solid object 

int mode  

-1 DOT_REVERSE Dot in Reverse mode 
0 DOT_CLEAR Dot being cleared 
1 DOT_MARK Dot being marked 

 
Example rectangle(10, 20, 80, 100, SHAPE_FILL, DOT_MARK); 

                                      // show a solid black rectangle 

Return Value None 

See Also circle, line 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



106 

 

CipherLab C Programming Guide 

 

2.12 TOUCH SCREEN 

For 8500 Series, the liquid crystal display (LCD) is also a touch screen when it is 
initialized by InitTouchScreen().  

 Signature Capture 

Use the stylus to write anything directly on a specific area of the LCD, which is 
defined by SignatureCapture(). Then, the signature can be captured by 
GetScreenItem().   

 Touchable Items 

Graphic items can be designed to simulate a key operation when being touched, e.g. 
a calculator. The information of “graphic items” (buttons), including position and size, 
has to be defined in advance through the data structure ItemProperty. 

Patterns of the graphic items can be designed and displayed on the LCD by 
show_image(). Then, these items can be utilized and detected by 
GetScreenItem().  

If the display mode for a selected item is set to ITEM_REVERSE, the item will be 
displayed in a reverse color once it is touched.  

On the contrary, if it is set to ITEM_NORMAL, there will be no changes happening to 
the item once it is touched. 

 

2.12.1 ITEMPROPERTY STRUCTURE 

typedef struct { 

int UppLeftX; 

int UppLeftY; 

int SizeX; 

int SizeY; 

} ItemProperty; 

The data structure is defined as shown below. 

Item  Description 

int UppLeftX X coordinate of the upper left corner of the item 

int UppLeftY Y coordinate of the upper left corner of the item 

int SizeX Width of the item, in dots 

int SizeY Height of the item, in dots 

 
 



  107 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetPoint  8500 

Purpose To get the position of the starting and ending points for any movement on the 
touch screen. 

Syntax int GetPoint (int *DownX, int *DownY, int *UpX, int *UpY); 

Parameters int DownX, DownY  

(X, Y) coordinates of the starting point. 
int UpX, UpY 

(X, Y) coordinates of the ending point.  
Example val = GetPoint(&dX, &dY, &uX, &uY); 

Return Value If successful, it returns 1.  

Otherwise, it returns 0. (= No touch on the screen.) 

See Also circle, rectangle 
 

GetScreenItem  8500 

Purpose To detect and return an item number when an item is selected, or detect and 
show any writing on the signature capture area. 

Syntax int GetScreenItem (ItemProperty *Item, int TotalItems, int mode); 

Parameters ItemProperty *Item  

The list of size information of items. 
int TotalItems 

The amount of items. 
int mode  

0 ITEM_NORMAL A touched item will be displayed normally. 
1 ITEM_REVERSE A touched item will be displayed in a reverse color.  

Example const ItemProperty  

Buttonlist[3] = {{8, 8, 24, 16},{38, 8, 24, 16},{68, 8, 24, 16}}; 

while (event) 

{ 

... 

val = GetScreenItem((void*)Buttonlist, 3, ITEM_REVERSE); 

} 

Return Value If successful, it returns the number of a selected item. (No return value for 
signature capture.) 

Otherwise, it returns 0. (= No item is chosen, or no signature is captured.) 

Remarks Before calling this routine, InitTouchScreen() must be called. This routine has 
to be called constantly to maintain its functionality.  

 ItemProperty is a data structure, consisting of the (X, Y) coordinates of the 
upper left corner, width and height of one item. 

See Also InitTouchScreen, show_image, SignatureCapture 
 



108 

 

CipherLab C Programming Guide 

 

GetTouchScreenState 8500 

Purpose To get the current state of touch screen. 

Syntax int GetTouchScreenState (void); 

Example val = GetTouchScreenState(); 

Return Value If enabled (initialized), it returns 1. 

Otherwise, it returns 0. 

See Also HaltTouchScreen, InitTouchScreen 
 

HaltTouchScreen 8500 

Purpose To stop the touch screen from operating. 

Syntax void HaltTouchScreen (void); 

Example HaltTouchScreen(); 

Return Value None 

Remarks To restart the touch screen function, InitTouchScreen() must be called. The 
touch screen won’t work until it is initialized. 

See Also InitTouchScreen 
 

InitTouchScreen 8500 

Purpose To initialize the touch screen. 

Syntax void InitTouchScreen (void); 

Example InitTouchScreen(); 

Return Value None 

See Also HaltTouchScreen 
 

SignatureCapture 8500 

Purpose To define a signature capture area on the touch screen. User may use the 
stylus to freely write or draw on this area.  

Syntax void SignatureCapture (int UppLeftX, int UppLeftY, int LowRightX, int 
LowRightY) 

Parameters int UppLeftX, UppLeftY  

(X, Y) coordinates of the upper left corner of the area. 
int LowRightX, LowRightY 

(X, Y) coordinates of the lower right corner of the area.  
Example SignatureCapture(8, 8, 150, 100); 

Return Value None 

See Also GetScreenItem 
 



  109 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.12.2 EXAMPLE 

TOUCH SCREEN TEST 

 

TOUCH SCREEN WITH PUTCH() 

main() 

{  : 

OSTaskCreate(TouchScreenTask…); 

  : 

while (1) 

{    getchar(); 

  : 

} 

} 

TouchScreenTask() 

{  : 

InitTouchScreen(); 

SignatureCapture(…); 

while (1) 

{    c = GetScreenItem(…); 
 

  : 

         putch(c);  

} 

} 

 
 



110 

 

CipherLab C Programming Guide 

 

2.13 FONTS 

2.13.1 FONT SIZE 

Basically, the mobile computer allows two font size options for the system font: 6x8 and 
8x16. These options are also applicable to other alphanumerical font files (for single byte 
languages), such as the multi-language font file and Hebrew/Nordic/Polish/Russian font 
files.  

 The LCD will show 6x8 alphanumeric characters by default.  

In addition to the system font, the mobile computer supports a number of font files as 
shown below. Available font size options depend on which font file is downloaded to the 
mobile computer. 

Font Files Custom Font Size SetFont Options 

System font (default) N/A FONT_6X8, FONT_8X16 

Multi-language font file N/A FONT_6X8, FONT_8X16 

Single-byte 

Others: He, Nd, Po, Ru N/A FONT_6X8, FONT_8X16 

Tc, Sc, Jp, Kr 16X16 FONT_6X8, FONT_8X16 Double-byte 

Tc12, Sc12, Jp12, Kr12 12X12 FONT_6X12, FONT_12X12 

2.13.2 DISPLAY CAPABILITY 

Varying by the screen size and the font size of alphanumeric characters, the display 
capability can be viewed by lines and characters (per line) as follows. 

Screen Size Alphanumerical Font Display Capability Icon Zone 

Font Size 6x8 dots 16 (char) * 8 (lines) Last column (4x64) 8000 100 x 64 dots 

Font Size 8x16 dots 12 (char) * 4 (lines) Last column (4x64) 

Font Size 6x8 dots 20 (char) * 8 (lines) Last column (8x64) 8300 128 x 64 dots 

Font Size 8x16 dots 15 (char) * 4 (lines) Last column (8x64) 

Font Size 6x8 dots 26 (char) * 18 (lines) Last row (160x16) 8400 160 x 160 dots 

Font Size 8x16 dots 20 (char) * 9 (lines) Last row (160x16) 

Font Size 6x8 dots 26 (char) * 19 (lines) Last row (160x8) 8500 160 x 160 dots 

Font Size 8x16 dots 20 (char) * 9 (lines) Last row (160x16) 

Note: For 8500 and 8400 Series, it can display up to 20 (or 10) lines when the icon area 
is not available for displaying the battery icon, etc. (= ICON_ZONE enabled) 

 

 



  111 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.13.3 MULTI-LANGUAGE FONT 

The multi-language font file includes English (default), French, Hebrew, Latin, Nordic, 
Portuguese, Turkish, Russian, Polish, Slavic, Slovak, etc. To display in any of these 
languages except English, you need to call SetLanguage() to specify the language by 
region. 
 

2.13.4 SPECIAL FONTS 

Fonts with file name specifying Tc12 (Traditional Chinese), Sc12 (Simplified Chinese), 
Jp12 (Japanese), or Kr12 (Korean) are referred to as the special font files. This is 
because their font size for alphanumeric characters must be determined by SetFont(), 
either 6x12 or 12x12. Otherwise, the characters cannot be displayed properly. 

CheckFont   

Purpose To check which font file resides in the flash memory. 

Syntax int CheckFont (void);  

Example n = CheckFont(); 

Return Value Return Value  

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 

0x08 

0x09 

0x0a 

0x0b 

0x0c 

0x0d 

0x10 

 System font only 

TC (Traditional Chinese) 

Reserved 

SC (Simplified Chinese) 

KR (Korean) 

JP (Japanese)  

HE (Hebrew) 

PO (Polish) 

RU (Russian) 

TC12 (Traditional Chinese) 

Reserved 

SC12 (Simplified Chinese) 

JP12 (Japanese)       

KR12 (Korean)               

MULTI (Multi-language) 

 

16x16, Big5 code 

16x16, GB code 

 

 

16x16 

 

 

 

12x12, Big5 code 

 

12x12, GB code 

12x12 

12x12 

 
 

See Also FontVersion, SetLanguage 
 



112 

 

CipherLab C Programming Guide 

 

GetFont   

Purpose To get the current font size information. 

Syntax int GetFont (void);  

Example if (GetFont() == FONT_8X16) 

puts(“Font : 8X16”); 

Return Value Return Value  

FONT_6X8 

FONT_8X16 

FONT_6X12 

FONT_12X12 

6x8 graphic dots per character 

8x16 graphic dots per character 

6x12 graphic dots per character 

12x12 graphic dots per character 
 

See Also SetFont 
 

SetFont   

Purpose To select a font size for the LCD to display alphanumeric characters properly. 

Syntax void SetFont (int font);  

Parameters int font  

FONT_6X8 

FONT_8X16 

FONT_6X12 

FONT_12X12 

6x8 graphic dots per character 

8x16 graphic dots per character 

6x12 graphic dots per character 

12x12 graphic dots per character 
 

Example SetFont(FONT_8X16); 

Return Value None 

Remarks Depending on the current font and its available font size options, this routine 
specifies which font size is to be used following this call. 

 Single-byte Characters: 

For single-byte characters (system, ultilanguage, etc.), simply assign 
either FONT6X8 or FONT_8X16. 

 16x16 Double-byte Characters: 

You may assign FONT_6X8 or FONT_8X16 to display alphanumeric 
characters. 

 12x12 Double-byte Characters: 

If you assign FONT_6X12, the font size for single byte characters will be 
6x12, while it will still take 12x12 for double-byte characters (Tc12, Sc12, 
Jp12, Kr12). It thus provides flexibility in displaying alphanumeric. 
However, for Japanese Katakana, you have to assign FONT_12X12; 
otherwise, the cursor position will be misplaced. 

See Also GetFont, SetLanguage 
 



  113 

 

 Chapter 2  Mobile-Specific Function Library 

 

SetLanguage   

Purpose To select which language is to be used from the multi-language font file. 

Syntax void SetLanguage (int setting);  

Parameters int setting  

0x10 

0x11 

0x12 

0x13  

0x14  

0x15 

0x16 

0x17  

0x18  

0x19 

0x1a 

0x1b  

0x1c 

0x1d 

0x1e 

0x1f 

0x20 

English_437 

French_863 

Hebrew_862 

Latin_850 

Nordic_865 

Portugal_860 

CP_1251 

CP_852 

CP_1250 

Turkish_857 

Latin_II 

WIN1250 

ISO_28592 

IBM_LATIN_II 

Greek_737 

CP_1252 

CP_1253 

English (default) 

Canadian French 

Hebrew 

Multilingual Latin I 

Nordic 

Portuguese 

Cyrillic (Russian) 

Latin II (Slavic) 

Central European, Latin II (Polish) 

Turkish 

Latin II (Slovak) 

Windows 1250 

ISO-28592 (Latin 2)/ISO 8859-2 

IBM-LATIN II 

Greek 

Latin I 

Greek 
 

Example SetLanguage(0x14);                           // choose the Nodic font 

Return Value None 

Remarks If the multi-language font file has been downloaded to the mobile computer, 
then this routine can be used to specify which language font is to be used by 
the system. Later, you can always change this setting in System Menu. 

See Also CheckFont, SetFont 
 
 



114 

 

CipherLab C Programming Guide 

 

2.13.5 FONT FILES 

8000, 8300 Font File Font Size 

Font-Hebrew.shx Font size: 6x8 or 8x16 

Font-Japanese.shx Font size: 16x16 (4 lines) 

Font-Japanese12.shx Font size: 6x12 or 12x12 (5 lines) 

Font-Korean.shx Font size: 16x16 (4 lines) 

Font-Korean12.shx Font size: 6x12 or 12x12 (5 lines) 

Font-Nordic.shx Font size: 6x8 or 8x16 

Font-Polish.shx Font size: 6x8 or 8x16 

Font-Russian.shx Font size: 6x8 or 8x16 

Font-SimplifiedChinese.shx Font size: 16x16 (4 lines) 

Font-SimplifiedChinese12.shx Font size: 6x12 or 12x12 (5 lines) 

Font-TraditionalChinese.shx Font size: 16x16 (4 lines) 

Font-TraditionalChinese12.shx Font size: 6x12 or 12x12 (5 lines) 

Font-Multi-Language.shx Font size: 6x8 or 8x16 

Note: The above font files have been recompiled to support 2 MB flash memory and 
renamed accordingly. 

8400 Font File Font Size 

Font8400-Hebrew.shx Font size: 6x8 or 8x16 

Font8400-Japanese.shx Font size: 16x16 (9 lines) 

Font8400-Japanese12.shx Font size: 6x12 or 12x12 (12 lines) 

Font8400-Korean.shx Font size: 16x16 (9 lines) 

Font8400-Nordic.shx Font size: 6x8 or 8x16 

Font8400-Polish.shx Font size: 6x8 or 8x16 

Font8400-Russian.shx Font size: 6x8 or 8x16 

Font8400-SimplifiedChinese.shx Font size: 16x16 (9 lines) 

Font8400-SimplifiedChinese12.shx Font size: 6x12 or 12x12 (12 lines) 

Font8400-TraditionalChinese.shx Font size: 16x16 (9 lines) 

Font8400-TraditionalChinese12.shx Font size: 6x12 or 12x12 (12 lines) 

Font8400-Multi-Language.shx Font size: 6x8 or 8x16 
 



  115 

 

 Chapter 2  Mobile-Specific Function Library 

 

8500 Font File Font Size 

Font8500-Japanese.shx Font size: 16x16 (9 lines) 

Font8500-Korean.shx Font size: 16x16 (9 lines) 

Font8500-SimplifiedChinese.shx Font size: 16x16 (9 lines) 

Font8500-SimplifiedChinese 12.shx Font size: 6x12 or 12x12 (12 lines) 

Font8500-TraditionalChinese.shx Font size: 16x16 (9 lines) 

Font8500-TraditionalChinese 12.shx  Font size: 6x12 or 12x12 (12 lines) 

Font8500-Multi-Language.shx Font size: 6x8 or 8x16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



116 

 

CipherLab C Programming Guide 

 

2.14 MEMORY 

This section describes the routines related to the flash memory and SRAM, where 
Program Manager and File System reside respectively. 

 For 8400 Series, it allows using SD card. 

Memory Size Flash Memory SRAM SD Card 

8000 Series 2 MB 2 MB, 4 MB N/A 

8300 Series 2 MB 2 MB, 6 MB, 10 MB N/A 

8400 Series 4 MB 4 MB, 16 MB Supported 

8500 Series 2 MB 2 MB, 6 MB, 10 MB N/A 

2.14.1 FLASH 

The flash memory is divided into a number of memory banks, and each bank is 64 KB.  

 If 2 MB, it is divided into 32 banks. (8000/8300/8500) 

 If 4 MB, it is divided into 64 banks. (8400) 

The kernel itself takes 2 banks, and the system reserves 1 bank (0xF60000~0xF6FFFF) 
for data storage, such as the application settings. The rest banks are available for storing 
user programs as well as font files. Because the flash memory is non-volatile, it needs to 
be erased before writing to the same bank, 0xF60000~0xF6FFFF. This memory bank is 
further divided into 256 records, numbering from 1 ~ 256 and each with length limited to 
255 bytes. 

Note: (1) Up to 256 records can be saved. The flash memory can only be erased on a 
bank basis, that is, all the records stored in 0xF60000 ~ 0xF6FFFF will be gone.
 (2) For 8400, the system reserves 6 banks (0xF00000~0xF5FFFF) for future use. 

 

EraseSector   

Purpose To erase a whole sector of the flash memory. 

Syntax int EraseSector (void *sector_start_addr); 

Example EraseSector(0xF60000); 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. 

Remarks This routine erases the flash memory before calling WriteFlash() to write data 
to the flash memory. 

 

FlashSize   

Purpose To get the size of the flash memory (for storing user programs). 

Syntax int FlashSize (void); 

Example FlashSize(); 

Return Value This routine returns the size of the flash memory in kilobyte. 
 



  117 

 

 Chapter 2  Mobile-Specific Function Library 

 

WriteFlash   

Purpose To write data to the flash memory. 

Syntax int WriteFlash (void *target_addr, void *source_addr, unsigned long size); 

Example char szData[100]; 

EraseSector(0xF60000); 

WriteFlash(0xF60000, szData, 100); 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. 

Remarks The flash memory can also be used to store data if the user programs have not 
used all of it.  

 The possible available flash memory is 64 Kbytes and its address starts 
from 0xF60000. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



118 

 

CipherLab C Programming Guide 

 

2.14.2 SRAM 

The File System keeps user data in SRAM, which is maintained by the backup battery. 
However, data loss may occur during low battery condition or when the battery is 
drained. It is necessary to upload data to a host computer before putting away the 
mobile computer. 
 

free_memory   

Purpose To get the size of free memory in SRAM. 

Syntax long free_memory (void); 

Example available_memory = free_memory(); 

Return Value This routine returns the size of the free memory in byte. 

Remarks This routine gets the amount of free (unused) memory of the file space.  
 

init_free_memory  

Purpose To initialize the file space in SRAM. 

Syntax void init_free_memory (void); 

Example init_free_memory(); 

Return Value None 

Remarks This routine first tries to identify how many SRAM cards are installed, and then 
initialize the overall file space (total SRAMs deducts memory of system space 
and user space).  

 The original contents of the file space will be wiped out after calling this 
routine. 

 Whenever the amount of the SRAMs installed is changed, this routine must 
be called to recognize such change. 

 

RamSize   

Purpose To get the size of data memory (SRAM) for storing data files. 

Syntax int RamSize (void); 

Example RamSize(); 

Return Value This routine returns the size of SRAM in kilobyte. 

 
 



  119 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.14.3 SD CARD 

ffreebyte  8400 

Purpose To get the number of free kilobytes on SD card. 

Syntax long ffreebyte (void) ; 

Example long freekb; 

if ((freekb = ffreebyte()) == -1L) 

printf(“Get free byte failed!”); 

Return Value If successful, it returns a long integer containing the number of free kilobytes 
on SD card. 

On error, it returns -1L. The global variable ferrno is set to indicate the error 
condition encountered. 

See Also fsize 
 

fsize  8400 

Purpose To get the volume of SD card, excluding the space used by FAT structure. 

Syntax long fsize (void) ; 

Example long size; 

if ((size = fsize()) == -1L) 

printf(“Get card size failed!”); 

Return Value If successful, it returns a long integer containing the number of free kilobytes 
on SD card. 

On error, it returns -1L. The global variable ferrno is set to indicate the error 
condition encountered. 

See Also ffreebyte 
 

 

 

 

 
 



120 

 

CipherLab C Programming Guide 

 

2.15 FILE MANIPULATION 

There are many file manipulation routines available for programming the mobile 
computers. These routines help manipulate the transaction data and ease the 
implementation of database system.  

Two types of file structures are supported — 

 Sequential structure called DAT file that is usually used to store transaction data.  

 Index structure is usually used to store lookup data. Actually, there are two types of 
index file. One is DBF for storing the original data records (data members), and the 
other is IDX for sorting the records according to the associate key.  

These two file structures will be further discussed later in this section.  

For 8400, it supports SD card, on which you may store DAT files, as well as DBF and IDX 
files. Refer to 2.24 SD Card.  

File Structure Files in SRAM Files on SD Card 

DAT Files Refer to 2.15.6 DAT Files. Refer to 2.24.5 SD Card Manipulation. 

DBF and IDX Files Refer to 2.15.7 DBF Files and IDX Files. 

2.15.1 FILE SYSTEM 

On each mobile computer, on-board SRAM is provided for data memory. This is the place 
where all the system parameters, program variables, program stack, and file system 
resides. 
 

2.15.2 DIRECTORY 

The file system is flat, that is, it does not support hierarchical tree directory structure, 
and no sub-directory can be created. There is a limit for the total number of files, which 
includes all DAT files as well as DBF files and their associated IDX files. To get the 
information of the file directory, you can call filelist(). 

 Max. 254 files 
 

2.15.3 FILE NAME 

A file name is a null terminated character string containing 1 ~ 8 characters (the null 
character not included), which is used to identify the file in the system. There is no file 
extension as in MS-DOS operation system. The file name can be changed later by calling 
rename(). 

 If a file name specified is longer than eight characters, it will be truncated to eight 
characters.  

 The file name is case-sensitive. 
 



  121 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.15.4 FILE HANDLE (FILE DESCRIPTOR) 

File handle is the identification of a file after the file is opened. Most of the file 
manipulation functions need file handles instead of file names when calling them. 

 A file handle is a positive integer (greater than zero) that is returned from the system 
when a file is created or opened. All subsequent file operations can then use the file 
handle to identify the file. 

2.15.5 ERROR CODE 

A system variable “fErrorCode” is used to indicate the result of the last file operation.  

 A value other than zero indicates error. The error code can be accessed by calling 
read_error_code(). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 

 

CipherLab C Programming Guide 

 

Below are the routines applicable to both types of files, DAT and DBF files (with 
associated IDX files). 

 
 

access   

Purpose To check whether a file exists or not. 

Syntax int access (char *filename); 

Parameters char *filename 

Pointer to a buffer where the filename of the file to be checked is stored. 

 If the filename exceeds eight characters, it will be truncated to eight 
characters.  

Example if (access(“data1”)) puts(“data1 exist!\n”); 

Return Value If file exists, it returns 1. 

If file does not exist, it returns 0. 

On error, it returns -1.  

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

1 filename is a NULL string. 
 

 

filelist   

Purpose To get information about the file directory. 

Syntax int filelist (char *dir); 

Parameters char *dir 

Pointer to a buffer where the information is copied to.  

 The size of buffer must be at least 25 * (No. of files) +1, which means 
you need to multiply the total number of files by 25, and then plus 1 for 
the terminating character. It takes at most 25 bytes to store information 
of each file. See the format of file information below.  

 

Example total_file = filelist(dir); 

Return Value It simply returns the number of files currently exist in the system. 

Remarks This routine copies the file name, file type, and file size information (separated 
by a blank character) of all files in existence into a character array specified by 
the argument dir. 

  
 



  123 

 

 Chapter 2  Mobile-Specific Function Library 

 

get_file_number  

Purpose To get the total number of a specific file type. 

Syntax int get_file_number (int type); 

Parameters int type 

0  Get the number of total files. 
1  Get the number of DAT files. 

2  Get the number of DBF files. 
3  Get the number of Index files.  

Example total_DAT_file = get_file_number(1); 

Return Value It simply returns the number of files. 

Remarks For filelist(), the same result can be obtained from get_file_number(0). 
 

read_error_code  

Purpose To get the value of the global variable fErrorCode. 

Syntax int read_error_code (void); 

Example if (read_error_code() == 2) puts(“File not exist!\n”); 

Return Value It returns the value of the global variable fErrorCode. 

Remarks This routine gets the value of the global variable fErrorCode and returns the 
value to the calling program. You may call this function to get the error code of 
the previously called routine for file manipulation. Yet, the global variable 
fErrorCode can be directly accessed without making a call to this routine. 

 

remove   

Purpose To delete a file. 

Syntax int remove (char *filename); 

Parameters char *filename 

Pointer to a buffer where the filename of the file to be deleted is stored. 

 If the filename exceeds eight characters, it will be truncated to eight 
characters.  

 If the file to be deleted is a DBF file, the DBF file and all the index (key) 
files associated to it will be deleted together.  

Example if (remove(“data1”)) puts(“data1 is deleted!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

1 

2 

10 

filename is a NULL string. 

File specified by filename does not exist. 

Not enough free block. 
 

 



124 

 

CipherLab C Programming Guide 

 

rename   

Purpose To change the file name of an existing file. 

Syntax int rename (char *old_filename, char *new_filename); 

Parameters char *old_filename 

Pointer to a buffer where the original filename is stored. 

char *new_filename 

Pointer to a buffer where the new filename is stored. 

 If any of the two file name exceeds eight characters, it will be truncated to 
eight characters.  

 If the file specified by old_filename is a DBF file, the file name of the DBF 
file and all the index (key) files associated to it will be changed to 
new_filename together. 

Example if (rename(“data1”, “text1”)) puts(“data1 is renamed!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

1 

2 

3 

filename is a NULL string. 

File specified by filename does not exist. 

A file named as new_filename already exists. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  125 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.15.6 DAT FILES 

DAT files have a sequential file structure.  

 Data at the beginning of a DAT file can be removed by calling the delete_top() or 
delete_topln() function. The new file top, the file pointer, and the size of the DAT 
file will be adjusted accordingly after calling either of the two functions. 

 The append() and appendln() functions can write data to the EOF (end of file) 
position, no matter where the file pointer points to. That is, the file pointer position is 
not changed after calling these functions.  

Normally, this is the scheme for handling the transaction data, that is, reading and 
removing data from top of the file, and adding new data to the bottom of a file. 

append   

Purpose To write a specified number of bytes to the bottom (EOF) of a DAT file. 

Syntax int append (int fd, char *buffer, int count); 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 

int count 

Number of bytes to be written. 

 The maximum number of characters that can be written is 32767.  
Example append(fd, “1234567890”, 10); 

Return Value If successful, it returns the number of bytes actually written to the file. 

On error, it returns -1.   

  An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

10 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of count is negative. 

No free file space for file extension. 
 

Remarks This routine writes a number of bytes (count) from the character array buffer 
to the bottom of a DAT file (fd). 

 Writing of data starts at the end-of-file position, and the file pointer 
position is unaffected by the operation. It will automatically extend the file 
size to hold the data written. 

See Also appendln, read, readln, write, writeln 
 



126 

 

CipherLab C Programming Guide 

 

appendln   

Purpose To write a line (null-terminated string) to the bottom (EOF) of a DAT file. 

Syntax int appendln (int fd, char *buffer); 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 
 

Example appendln(fd, data_buffer); 

Return Value If successful, it returns the number of bytes actually written to the file, 
including the null character. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

11 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

No free file space for file extension. 

Cannot find string terminator in buffer. 
 

Remarks This routine writes a null-terminated string from the character array buffer to 
the bottom of a DAT file (fd).  

 Characters are written to the file until a null character (\0) is encountered. 
The null character is also written to the file.  

 Writing of data starts at the end-of-file position, and the file pointer 
position is unaffected by the operation. It will automatically extend the file 
size to hold the data written. 

See Also append, read, readln, write, writeln 
 

chsize   

Purpose To extend or truncate a DAT file. 

Syntax int chsize (int fd, long size); 

Parameters int fd 

File handle of the target DAT file. 

long size 

New size of the file, in bytes. 
 

Example if (chsize(fd, 0L)) puts(“file is truncated!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0. 
 



  127 

 

 Chapter 2  Mobile-Specific Function Library 

 

  An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

No free file space for file extension. 
 

Remarks This routine extends or truncates a DAT file (fd) to match the new file length in 
bytes given in the argument size.  

 If the file is truncated, all data beyond the new file size will be lost.  

 If the file is extended, no initial value is filled to the newly extended area. 
 

close   

Purpose To close a previously opened or created DAT file. 

Syntax int close (int fd); 

Parameters int fd 

File handle of the target DAT file. 
 

Example if (close(fd)) puts(“file is closed!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 
 

See Also open 
 

delete_top   

Purpose To delete a specified number of bytes from the top (beginning-of-file position) 
of a DAT file. 

Syntax int delete_top (int fd, int count); 

Parameters int fd 

File handle of the target DAT file. 

int count 

Number of bytes to be deleted. 
 

Example delete_top(fd, 80); 
 



128 

 

CipherLab C Programming Guide 

 

Return Value If successful, it returns the number of bytes actually removed from the file. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of count is negative. 
 

Remarks This routine deletes the number of bytes (count) from a DAT file (fd).  

 Removal of data starts at the beginning-of-file position of the file, and the 
file pointer position is adjusted accordingly.  

 For example, if initially the file pointer points to the tenth character, after 
deleting eight characters from the file, the new file pointer will points to the 
2nd character of the file. It will resize the file size automatically. 

See Also delete_topln 
 

delete_topln   

Purpose To delete a line (null-terminated string) from the top (beginning-of-file 
position) of a DAT file. 

Syntax int delete_topln (int fd); 

Parameters int fd 

File handle of the target DAT file. 
 

Example delete_topln(fd); 

Return Value If successful, it returns the number of bytes actually removed from the file, 
including the null character. 

On error, it returns -1.    

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 
 

Remarks This routine deletes a null-terminated string specified from a DAT file (fd).  

 Characters are removed from the file until a null character (\0) or 
end-of-file is encountered. The null character is also removed from the file.  

 Removal of data starts at the beginning-of-file position of the file, and the 
file pointer position will be adjusted accordingly. It will resize the file size 
automatically.  

 



  129 

 

 Chapter 2  Mobile-Specific Function Library 

 

See Also delete_top 
 

eof   

Purpose To check whether or not the file pointer of a DAT file reaches the end-of-file 
(eof) position. 

Syntax int eof (int fd); 

Parameters int fd 

File handle of the target DAT file. 
 

Example if (eof(fd)) puts(“end of file is reached!\n”); 

Return Value If EOF is reached, it returns 1. 

If EOF is not reached, it returns 0. 

On error, it returns -1.    

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 
 

 

filelength   

Purpose To get the size information (in bytes) of a DAT file. 

Syntax long filelength (int fd); 

Parameters int fd 

File handle of the target DAT file. 
 

Example data_size = filelength(fd); 

Return Value If successful, it returns the number of bytes for file size. 

On error, it returns -1L.    

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 
 

 

lseek   

Purpose To reposition the file pointer of a DAT file. 

Syntax long lseek (int fd, long offset, int origin); 
 



130 

 

CipherLab C Programming Guide 

 

Parameters int fd 

File handle of the target DAT file. 

long offset 

Offset of new position (in bytes) from origin. 

int origin  

1  Offset from the beginning of the file. 
0  Offset from the current position of the file pointer. 

-1  Offset from the end of the file. 
 

Example lseek(fd, 512L, 0);                      // skip 512 bytes 

Return Value If successful, it returns the number of bytes of offset. 

On error, it returns -1L. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

15 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of origin is invalid. 

New position is beyond end-of-file. 
 

Remarks This routine repositions the file pointer of a DAT file (fd) by seeking a number 
of bytes (offset) from the given position (origin). 

See Also tell 
 

open   

Purpose To open a DAT file and get its file handle for further processing. 

Syntax int open (char *filename); 

Parameters char *filename 

Pointer to a buffer where the filename of the file to be opened is stored. 

 If the file specified by filename does not exist, it will be created first. 

 If filename exceeds eight characters, it will be truncated to eight 
characters.  

Example if (fd = open(“data1”) > 0) puts(“data 1 is opened!\n”); 

Return Value If successful, it returns the file handle. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

 



  131 

 

 Chapter 2  Mobile-Specific Function Library 

 

 Error Code Meaning 

1 

4 

5 

6 

filename is a NULL string. 

File specified by filename is not a DAT file. 

File specified by filename is already opened. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

 
Remarks A file handle is a positive integer (greater than zero) used to identify the file for 

subsequent file manipulation on the file.  

Once the file is opened, the file pointer is at the beginning of the file. 

See Also close 
 

read   

Purpose To read a specified number of bytes from a DAT file. 

Syntax int read (int fd, char *buffer, int count); 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 

int count 

Number of bytes to be read. 
 

Example if ((byte_read = read(fd, buffer, 80)) == -1) puts(“read error!\n”);

Return Value If successful, it returns the number of bytes actually read from the file. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of count is negative. 
 

Remarks This routine reads a number of bytes (count) from a DAT file (fd) to the 
character array buffer. 

 Reading of data starts from the current position of the file pointer, which is 
incremented accordingly when the operation is completed. 

See Also readln, write, writeln 
 

readln   

Purpose To read a line (null-terminated string) from a DAT file. 

Syntax int readln (int fd, char *buffer, int max_count); 
 



132 

 

CipherLab C Programming Guide 

 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 

int max_count 

Maximum number of bytes to be read. 

 Usually set to a value which equals the size of the buffer to avoid 
overflow.  

Example readln(fd, buffer, 80); 

Return Value If successful, it returns the number of bytes actually read from the file. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of max_count is negative. 
 

 This routine reads a null-terminated string from a DAT file (fd) to the character 
array buffer. Characters are read until end-of-file or a null character (\0) is 
encountered, or the total number of character read equals the number 
specified by max_count. 

Remarks  If characters are read until a null character (\0) is encountered, the null 
character is also read into buffer. That is, it is also counted for the return 
value. Otherwise, there may not be a null character stored in buffer. 

 Reading of data starts from the current position of the file pointer, which is 
incremented accordingly when the operation is completed. 

See Also read, write, writeln 
 

tell   

Purpose To get the current file pointer position of a DAT file. 

Syntax long tell (int fd); 

Parameters int fd 

File handle of the target DAT file. 
 

Example current_position = tell(fd); 

Return Value If successful, it returns the number of bytes for the offset from the beginning of 
the file to the current file pointer. 

On error, it returns -1L.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

 



  133 

 

 Chapter 2  Mobile-Specific Function Library 

 

 Error Code Meaning 

2 

4 

7 

8 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 
 

Remarks The file pointer position is expressed in number of bytes from the beginning of 
file.  

 For example, if the file pointer is at the beginning of the file, its position is 
0L. 

See Also lseek 
 

write   

Purpose To write a specified number of bytes to a DAT file. 

Syntax int write (int fd, char *buffer, int count); 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 

int count 

Number of bytes to be written. 

 The maximum number of characters that can be written is 32767.  
Example write(fd, data_buffer, 1024); 

Return Value If successful, it returns the number of bytes actually written to the file. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

10 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

The value of count is negative. 

No free file space for file extension. 
 

Remarks This routine writes a number of bytes (count) from the character array buffer 
to a DAT file (fd). 

 Writing of data starts at the current position of the file pointer, which is 
incremented accordingly when the operation is completed.  

 If end-of-file is encountered during operation, it will automatically extend 
the file size to hold the data written. 

See Also append, appendln, read, readln, writeln 
 



134 

 

CipherLab C Programming Guide 

 

writeln   

Purpose To write a line (null-terminated string) to a DAT file. 

Syntax int writeln (int fd, char *buffer); 

Parameters int fd 

File handle of the target DAT file. 

char *buffer 

Pointer to a buffer where data is stored. 
 

Example writeln(fd, data_buffer); 

Return Value If successful, it returns the number of bytes actually written to the file, 
including the null character. 

On error, it returns -1.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

11 

File specified by fd does not exist. 

File specified by fd is not a DAT file. 

Invalid file handle. 

File not opened. 

No free file space for file extension. 

Cannot find string terminator in buffer. 
 

Remarks This routine writes a null-terminated string from the character array buffer to a 
DAT file (fd). 

 Characters are written to the file until a null character (\0) is encountered. 
The null character is also written to the file.  

 Writing of data starts at the current position of the file pointer, which is 
incremented accordingly when the operation is completed. 

 If end-of-file is encountered during operation, it will automatically extend 
the file size to hold the data written. 

See Also append, appendln, read, readln, write 

 
 
 
 
 
 
 
 
 
 
 
 



  135 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.15.7 DBF FILES AND IDX FILES 

DBF files and IDX files form the platform of database system.  

 A DBF file has a fixed record length structure. This is the file that stores data records 
(members). Whereas, the associate IDX files are the files that keep information of the 
position of each record stored in the DBF files, but they are re-arranged (sorted) 
according to some specific key values. 

A library would be a good example to illustrate how DBF and IDX files work. When you 
are trying to find a specific book in a library, you always start from the index. The book 
can be found by looking into the index categories of book title, writer, publisher, ISBN 
number, etc. All these index entries are sorted in ascending order for easy lookup 
according to some specific information of books (book title, writer, publisher, ISBN 
number, etc.) When the book is found in the index, it will tell you where the book is 
actually stored. 

As you can see, the books kept in the library are analogous to the data records stored in 
the DBF file, and, the various index entries are just its associate IDX files. Some 
information (book title, writer, publisher, ISBN number, etc.) in the data records is used 
to create the IDX files. 

KEY NUMBER 

Each DBF file can have maximum 8 associate IDX files, and each of them is identified by 
its key (index) number. The key number is assigned by user program when the IDX file is 
created. 

Note: The valid key number ranges from 1 to 8. 

KEY VALUE 

Data records are not fetched directly from the DBF file but rather through its associated 
IDX files. The value of file pointers of the IDX files (index pointers) does not represent 
the address of the data records stored in the DBF file. It indicates the sequence number 
of a specific data record in the IDX file. 

add_member   

Purpose To add a data record (member) to a DBF file. 

Syntax int add_member (int DBF_fd, char *member); 

Parameters int DBF_fd 

File handle of the target DBF file. 

char *member 

Pointer to a buffer where new member is stored. 
 

Example add_member(DBF_fd, member); 

 



136 

 

CipherLab C Programming Guide 

 

Return Value If successful, it returns 1. 

On error, it returns 0. 

  An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

No free file space for adding members. 
 

Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds 
index entries to all the associated IDX files. 

 If the length of the added member is greater than allowed for the DBF file 
(member_len in the create_DBF() function), the member will be truncated 
to fit in. 

See Also create_DBF, delete_member 
 

close_DBF   

Purpose To close a previously opened or created DBF file and its associated IDX files. 

Syntax int close_DBF (int DBF_fd); 

Parameters int DBF_fd 

File handle of the target DBF file. 
 

Example if (close_DBF(DBF_fd)) puts(“DBF file is closed!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0.   

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 
 

Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds 
index entries to all the associated IDX files. 

 If the length of the added member is greater than that defined for the DBF 
file (member_len in the create_DBF() function), the member will be 
truncated to fit in. 

See Also open_DBF 

 
 



  137 

 

 Chapter 2  Mobile-Specific Function Library 

 

create_DBF   

Purpose To create a DBF file and get its file handle for further processing. 

Syntax int create_DBF (char *filename, int member_len); 

Parameters char *filename 

Pointer to a buffer where the filename of the file to be created is stored. 

 If filename exceeds eight characters, it will be truncated to eight 
characters. 

 For 8400 Series, if the file is created on SD card, the filename must be 
given in full path and cannot exceed 250 bytes. Refer to 2.24.2 Directory 
for how to specify a file path. 

int member_len 

Maximum member (record) length of the DBF file. 

 Any member subsequently added to this DBF file with length greater than 
the maximum length will be truncated to fit in.  

Example if (fd = create_DBF(“data1”, 64) > 0) puts(“data1 is created!\n”); 

Return Value If successful, it returns the file handle. 

On error, it returns -1. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

1 filename is a NULL string. 

6 Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

9 

12 

The value of member_len is invalid. 

File specified by filename already exists. 
 

Remarks This routine creates a DBF file (filename) with its member length specified 
(member_len), and gets the file handle of it. 

 A file handle is a positive integer (greater than zero) used to identify the 
file for subsequent file manipulation on the file.  

 User-defined indexes may be created after the DBF file is created. 

See Also close_DBF, create_index, open_DBF 
 



138 

 

CipherLab C Programming Guide 

 

create_index   

Purpose To create an IDX file of a DBF file. 

Syntax int create_index (int DBF_fd, int key_number, int key_offset, int key_len); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the IDX file to be created. 

int key_offset 

Offset in bytes where the key value in a member begins. 

int key_len 

Length of key value of the IDX file: Max. 32767 for SRAM, 1024 for SD card 
 

Example create_index(DBF_fd, 1, 0, 10); 

Return Value If successful, it returns 1. 

On error, it returns 0. 

  An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

6 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

7 

8 

13 

17 

18 

19 

Invalid file handle. 

File not opened. 

The value of key_number is invalid. 

The value of key_offset or key_len is invalid. 

DBF file specified by DBF_fd is not empty. 

IDX file specified by key_number already exists. 
 

Remarks This routine creates an IDX file (key_number), which is associated with a DBF 
file (DBF_fd). The key field of the IDX file is specified by key_offset and 
key_len. 

 The key field should be within member_len as defined in the create_DBF() 
function. That is, key_offset plus key_len should not be greater than 
member_len.  

 This routine can only be called before any members are added to the DBF 
file, that is, when the DBF file is empty (no members exist). If any member 
exists in the DBF file, rebuild_index() should be used instead. 

See Also create_DBF, rebuild_index, remove_index 
 



  139 

 

 Chapter 2  Mobile-Specific Function Library 

 

delete_member   

Purpose To delete a data record (member) from a DBF file. 

Syntax int delete_member (int DBF_fd, int key_number); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file. 
 

Example delete_member(DBF_fd, 1); 

Return Value If successful, it returns 1. 

On error, it returns 0. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

13 

14 

16 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

Not enough free block. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 

No members exist in the DBF file. 
 

Remarks This routine deletes a data record (member) pointed to by the index pointer of 
an IDX file (key_number), which is associated with a DBF file (DBF_fd). 

See Also add_member, has_member 
 



140 

 

CipherLab C Programming Guide 

 

get_member   

Purpose To read a data record (member) from a DBF file. 

Syntax int get_member (int DBF_fd, int key_number, char *buffer); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file. 

char *buffer 

Pointer to a buffer where the member is read into. The size of buffer should 
be at least one byte more than the member length (buffer ≧ member length 
+1) because it will add the terminating null character. 

 
Example if (get_member(DBF_fd, 1, buffer) == 0) puts(buffer); 

Return Value If successful, it returns 1. 

On error, it returns 0. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

13 

14 

16 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 

No members exist in the DBF file. 
 

Remarks This routine reads a data record (member) pointed to by the index pointer of 
an IDX file (key_number), which is associated with a DBF file (DBF_fd). 

See Also has_member 

 

 

 

 

 

 
 



  141 

 

 Chapter 2  Mobile-Specific Function Library 

 

has_member   

Purpose To check whether or not a specific data record (member) exists in a DBF file. 

Syntax int has_member (int DBF_fd, int key_number, char *key_value); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file. 

char *key_value 

Pointer to a buffer where a key value is hold to identify a specific member. 
 

Example if (has_member(DBF_fd, 1, “JOHN”)) puts(“JOHN is on the name list!\n”);

Return Value If a member exists, it returns 1. 

If a member does not exist, it returns 0. 

On error, it returns -1. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

13 

14 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 
 

Remarks This routine searches for the key_value in any data record (member) of an IDX 
file (key_number), which is associated with a DBF file (DBF_fd). 

 If there is a complete match to the key_value, the index pointer will point 
to the first of all matches. 

 In case there is more than one member containing the key value, check 
each member sequentially from the one currently is pointed to by the index 
pointer until the desired member is found. 

See Also get_member 
 



142 

 

CipherLab C Programming Guide 

 

lseek_DBF   

Purpose To reposition the file pointer of an IDX file. 

Syntax long lseek_DBF (int DBF_fd, int key_number, long offset, int origin); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file. 

long offset 

Offset of new position, sequence number from origin. 

int origin  

1  Offset from the first index of the IDX file. 

0  Offset from the current position of the index pointer. 

-1  Offset from the last index of the IDX file. 
 

Example lseek_DBF(DBF_fd, 1, 1L, 0);         // move to next member 

Return Value If successful, it returns the sequence number of offset. 

On error, it returns -1L. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

9 

13 

14 

15 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

The value of origin is invalid. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 

New position is beyond end-of-file. 
 

Remarks This routine repositions the file pointer of an IDX file (key_number), which is 
associated with a DBF file (DBF_fd), by seeking a sequence number (offset) 
from the given position origin.  

See Also tell_DBF 
 



  143 

 

 Chapter 2  Mobile-Specific Function Library 

 

member_in_DBF  

Purpose To get the total number of members in a DBF file. 

Syntax long member_in_DBF (int DBF_fd); 

Parameters int DBF_fd  

File handle of the target DBF file. 
 

Example total_member = member_in_DBF(DBF_fd); 

Return Value If successful, it returns the number of members. 

On error, it returns -1L. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 
 

 



144 

 

CipherLab C Programming Guide 

 

open_DBF   

Purpose To open an existing DBF file and get its file handle for further processing. 

Syntax int open_DBF (char *filename); 

Parameters char *filename 

Pointer to a buffer where the filename of the DBF file to be opened is stored. 

 If the filename exceeds eight characters, it will be truncated to eight 
characters.  

 For 8400 Series, if the file is created on SD card, the filename must be 
given in full path and cannot exceed 250 bytes. Refer to 2.24.2 Directory 
for how to specify a file path.  

Example if (fd = open_DBF(“data1”) > 0) puts(“data1 is opened!\n”); 

Return Value If successful, it returns the file handle. 

On error, it returns -1. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

1 

2 

4 

5 

filename is a NULL string. 

File specified by filename does not exist. 

File specified by filename is not a DBF file. 

File specified by filename is already opened. 
 

Remarks This routine simultaneously opens all the IDX (key) files associated with the 
DBF file being opened. After the DBF is opened, the index pointers of all the 
associated index files point to the beginning of the respective index. 

 A file handle is a positive integer (greater than zero) used to identify the 
file for subsequent file manipulation on the file. 

See Also close_DBF, create_DBF, create_index 
 



  145 

 

 Chapter 2  Mobile-Specific Function Library 

 

rebuild_index   

Purpose To rebuild an IDX file of a DBF file. 

Syntax int rebuild_index (int DBF_fd, int key_number, int base_index, int 
key_offset, int key_len); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file. 

 If the IDX file already exists, it will be overwritten; otherwise, this routine 
will create a new IDX file.  

int base_index 

Base index as the preference index. 

 If no base index is preferred, the base_index should be 0. Then, the 
resulting sequence will be the original member sequence in the DBF file. 

int key_offset 

Offset in bytes where the key value in a member begins. 

int key_len 

Length of key value of the IDX file: Max. 32767 for SRAM, 1024 for SD card 
 

Example rebuild_index(DBF_fd, 1, 0, 0, 10); 

Return Value If successful, it returns 0. 

On error, it returns -1. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

6 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

7 

8 

10 

13 

14 

17 

20 

21 

Invalid file handle. 

File not opened. 

No free file space for rebuilding index. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 

The value of key_offset or key_len is invalid. 

The value of base_index is invalid. 

Base_index does not exist. 
 

 



146 

 

CipherLab C Programming Guide 

 

Remarks This routine rebuilds or creates an IDX file (key_number), which is associated 
with a DBF file (DBF_fd). It can be used whenever an IDX file has the same 
values for a key field. The key field of the IDX file is specified by key_offset and 
key_len. 

 base_index specifies the IDX file from which this routine takes as the input 
sequence for building the new IDX file. For example, if a report is to be 
generated by the sequence of date, department, and ID number, and the 
date and department data may be repeated. This can be done by rebuilding 
the ID number index first. Then, rebuild the department index with the ID 
number index as the base index. And finally, rebuild the date index with 
the department index as the base index. The resulting member sequence in 
the date index will be in date, department, and ID number.  

 The key field should be within member_len as defined in the create_DBF() 
function. That is, key_offset plus key_len should not be greater than 
member_len. 

See Also create_index, remove_index 
 

remove_index   

Purpose To delete an IDX file of a DBF file. 

Syntax int remove_Index (int DBF_fd, int key_number); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file.  
 

Example if (remove_index(DBF_fd, 1)) puts(“index is removed!\n”); 

Return Value If successful, it returns 1. 

On error, it returns 0. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

10 

13 

14 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

Not enough free block. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 
 

See Also create_index, rebuild_index 
 



  147 

 

 Chapter 2  Mobile-Specific Function Library 

 

tell_DBF   

Purpose To get the current index pointer position of an IDX file. 

Syntax long tell_DBF (int DBF_fd, int key_number); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file.  
 

Example rank_number = tell_DBF(DBF_fd, 1); 

Return Value If successful, it returns the rank number for the current index pointer. 

On error, it returns -1L. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

13 

14 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 
 

Remarks This routine gets the current index pointer position of an IDX file 
(key_number), which is associated with a DBF file (DBF_fd). 

 The index pointer position is expressed in rank number in the IDX file. For 
example, if the index pointer points to the first index, its position will be 1L. 

See Also lseek_DBF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



148 

 

CipherLab C Programming Guide 

 

UnpackDBF  8000, 8300, 8400 

Purpose To unpack the DBF files created by PC utility “DataConverter.exe”. 

Syntax int UnpackDBF (const char *filenameSource); 

Parameters const char *filenameSource 

Pointer to a buffer where the source file name is stored. 
 

Example 1 unpack_file_count = UnpackDBF(“packdata”);     

// File stored in SRAM 

Example 2 unpack_file_count = UnpackDBF(“A:\\DBF_Data”); 

// File stored on SD (8400) 

Return Value If successful, it returns the number of unpacked DBF files. 

On error, it returns 0. The global variable fErrorCode is set to to indicate the 
error condition encountered. You may call read_error_code to get the error 
code. 

Error Code Meaning 

2 Source file in SRAM does not exist. 

4 Source file format is incorrect. 

10 Not enough space in SRAM. 

31 Fail to open file on SD card. Read ferrno for more 
information. 

 
Remarks It requires using the PC utility “DataConverter.exe” to create legal files (= 

packDBF) before downloading DBF files, via RS-232 or FTP, to the mobile 
computer and saved to SRAM or SD card. On the mobile computer, it then 
requires calling UnpackDBF() to recover the file.  

 If it is saved to SRAM, the original packed DBF files will be automatically 
removed upon completion of unpacking. 

 
 
 
 



  149 

 

 Chapter 2  Mobile-Specific Function Library 

 

update_member  

Purpose To update a data record (member) of a DBF file. 

Syntax int update_member (int DBF_fd, int key_number, char *member); 

Parameters int DBF_fd 

File handle of the target DBF file. 

int key_number 

Key number of the target IDX file.  

char *member 

Pointer to a buffer where data to be updated is stored. 
 

Example update_member(DBF_fd, 1, 10); 

Return Value If successful, it returns 1. 

On error, it returns 0. 

 An error code is set to the global variable fErrorCode to indicate the error 
condition encountered. Below are possible error codes and their 
interpretation. 

Error Code Meaning 

2 

4 

7 

8 

13 

14 

16 

File specified by DBF_fd does not exist. 

File specified by DBF_fd is not a DBF file. 

Invalid file handle. 

File not opened. 

The value of key_number is invalid. 

IDX file specified by key_number does not exist. 

No members exist in the DBF file. 
 

Remarks This routine updates a data record (member) pointed to by the index pointer of 
an IDX file (key_number), which is associated with a DBF file (DBF_fd). 
Although a data record is updated, the sequence in the index file will not 
change. Users have to call rebuild_index( ) manually to update the sequence in 
each index of the DBF file. 

See Also has_member 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



150 

 

CipherLab C Programming Guide 

 

2.15.8 FILE TRANSFER VIA SD CARD 

Refer to 2.24 SD Card for details on SD card for 8400 Series. 

RAMtoSD_DAT  8400 

Purpose To copy a DAT file from file system (SRAM) to SD card. 

Syntax int RAMtoSD_DAT (const char *filenameRAM, const char *filenameSD, int 
mode); 

Parameters const char *filenameRAM 

Pointer to a buffer where the source DAT file name is stored.  

 If filename exceeds eight characters, it will be truncated to eight 
characters. 

const char *filenameSD 

Pointer to a buffer where the target DAT file name is stored. 

 The filename must be given in full path. Refer to 2.24.2 Directory for how 
to specify a file path. 

int mode  

0  To remove the source file. 

1  To keep the source file. 
 

Example const static char SrcDAT[ ]= “data1”; 

const static char TarDAT[ ]= “A:\\XACT\\data1.dat”; 

 

printf(“Copy the file to SD card...”); 

Fremove(TarDAT);  //remove target if it exists 

if(!(i=RAMtoSD_DAT((void*) SrcDAT, (void*) TarDAT, 0))) 

{ 

printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code()); 

    while(1); 

} 

printf(“Done! File %s on SD card is created\r\n”, TarDAT); 

Return Value If successful, it returns 1. 

On error, it returns 0. The global variable fErrorCode is set to indicate the error 
condition encountered. You may call read_error_code to get the error code. 



  151 

 

 Chapter 2  Mobile-Specific Function Library 

 

 Error Code Meaning 

1 

2 

4 

5 

10 

32 

Invalid source/target file name. 

Source file does not exist. 

Source file is not a DAT file. 

Source file is already opened. 

Not enough free space on SD card 

Cannot create target file. Read ferrno for more 
information. 

33 Cannot write data to target file on SD card.  Read 
ferrno for more information 

 
Remarks The source DAT file must be closed before calling this routine. If the target file 

already exists, it will be overwritten; otherwise, this routine will create a new 
DAT file. 

See Also SDtoRAM_DAT, SDtoRAM_DBF, RAMtoSD_DBF 
 



152 

 

CipherLab C Programming Guide 

 

SDtoRAM_DAT  8400 

Purpose To copy a DAT file from SD card to file system (SRAM). 

Syntax int SDtoRAM_DAT (const char *filenameSD, const char *filenameRAM, int 
mode); 

Parameters const char *filenameSD 

Pointer to a buffer where the source DAT file name is stored.  

 The filename must be given in full path. Refer to 2.24.2 Directory for how 
to specify a file path. 

const char *filenameRAM 

Pointer to a buffer where the target DAT file name is stored. 

 If filename exceeds eight characters, it will be truncated to eight 
characters.  

int mode  

0  To remove the source file. 

1  To keep the source file. 
 

Example const static char SrcDAT [ ]= “A:\\XACT\\data2.dat”; 

const static char TarDAT [ ]= “data2”; 

printf(“Copy the file to RAM...”); 

remove(TarDAT); //remove target if it exists 

if(!(i=SDtoRAM_DAT((void*) SrcDAT, (void*) TarDAT, 1))) 

{ 

    printf(“\r\n Fail! ErrorCode=%d”, read_error_code()); 

    while(1); 

} 

printf(“Done! File %s in RAM is created\r\n”, TarDAT); 

Return Value If successful, it returns 1. 

On error, it returns 0. The global variable fErrorCode is set to indicate the error 
condition encountered. You may call read_error_code to get the error code. 

Error Code Meaning 

1 

6 

Invalid source/target file name. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

10 

31 

Not enough space. 

Fail to open file on SD card. Read ferrno for more 
information. 

 



  153 

 

 Chapter 2  Mobile-Specific Function Library 

 

Remarks The source DAT file must be closed before calling this routine. If the target file 
already exists, it will be overwritten; otherwise, this routine will create a new 
DAT file. 

See Also RAMtoSD_DAT, SDtoRAM_DBF, RAMtoSD_DBF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



154 

 

CipherLab C Programming Guide 

 

RAMtoSD_DBF  8400 

Purpose To copy a DBF file and its associated IDX files from file system (SRAM) to SD 
card. 

Syntax int RAMtoSD_DBF (const char *filenameRAM, const char *filenameSD, int 
mode); 

Parameters const char *filenameRAM 

Pointer to a buffer where the source DBF file name is stored.  

 If filename exceeds eight characters, it will be truncated to eight 
characters. 

const char *filenameSD 

Pointer to a buffer where the target DBF file name is stored. 

 The filename must be given in full path. Refer to 2.24.2 Directory for how 
to specify a file path. 

int mode  

0  To remove the source file. 

1  To keep the source file. 
 

Example const static char dbfname2[ ]= “RAMdbf1”; 

const static char dbfname3[ ]= “A:\\Database\\SDdbf2”; 

 

printf(“Copy the file to SD card...”); 

remove(dbfname3);  //remove target if it exists 

if(!(i=RAMtoSD_DBF((void*) dbfname2, (void*)dbfname3, 0))) 

{ 

printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code()); 

    while(1); 

} 

printf(“Done! File %s on SD card is created\r\n”, dbfname3); 

Return Value If successful, it returns 1. 

On error, it returns 0. The global variable fErrorCode is set to indicate the error 
condition encountered. You may call read_error_code to get the error code. 

Error Code Meaning 

1 

4 

5 

6 

Invalid source/target file name. 

Source file is not a DBF file. 

Source file is already opened. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system.  



  155 

 

 Chapter 2  Mobile-Specific Function Library 

 

 10 Not enough space. 
 

Remarks The source DBF file must be closed before calling this routine. If the target file 
already exists, it will be overwritten; otherwise, this routine will create a new 
DBF file. 

See Also RAMtoSD_DAT, SDtoRAM_DAT, SDtoRAM_DBF 
 



156 

 

CipherLab C Programming Guide 

 

SDtoRAM_DBF  8400 

Purpose To copy a DBF file and its associated IDX files from SD card to file system 
(SRAM). 

Syntax int SDtoRAM_DBF (const char *filenameSD, const char *filenameRAM, int 
mode); 

Parameters const char *filenameSD 

Pointer to a buffer where the source DBF file name is stored.  

 The filename must be given in full path. Refer to 2.24.2 Directory for how 
to specify a file path. 

const char *filenameRAM 

Pointer to a buffer where the target DBF file name is stored. 

 If filename exceeds eight characters, it will be truncated to eight 
characters.  

int mode  

0  To remove the source file. 

1  To keep the source file. 
 

Example const static char dbfname1[ ]= “A:\\SDdbf1”; 

const static char dbfname2[ ]= “RAMdbf1”; 

printf(“Copy the file to RAM...”); 

remove(dbfname2); //remove target if it exists 

if(!(i=SDtoRAM_DBF((void*)dbfname1, (void*) dbfname2, 1))) 

{ 

    printf(“\r\n Fail! ErrorCode=%d”, read_error_code()); 

    while(1); 

} 

printf(“Done! File %s in RAM is created\r\n”, dbfname2); 

Return Value If successful, it returns 1. 

On error, it returns 0. The global variable fErrorCode is set to indicate the error 
condition encountered. You may call read_error_code to get the error code. 

Error Code Meaning 

1 

4 

5 

6 

Invalid source/target file name. 

Source file is not a DBF file. 

Source file is already opened. 

Cannot create file. Because it is beyond the maximum 
number of files allowed in the system. 

10 Not enough space. 
 



  157 

 

 Chapter 2  Mobile-Specific Function Library 

 

Remarks The source DBF file must be closed before calling this routine. If the target file 
already exists, it will be overwritten; otherwise, this routine will create a new 
DBF file. 

See Also RAMtoSD_DAT, RAMtoSD_DBF, SDtoRAM_DAT 
 



158 

 

CipherLab C Programming Guide 

 

2.16 COM PORTS 

There are at least two communication (COM) ports on each mobile computer, namely 
COM1 and COM2. The user has to call SetCommType() to set up the communication 
type for the COM ports before using them. 

2.16.1 PORT MAPPING 

The table below shows the mapping of the communication (COM) ports. Specifying which 
type of interface is to be used, the user can use the same routines to open, close, read, 
and write data. 

Series COM1 COM2 COM3 COM4 COM5 

8000 Serial IR, IrDA Acoustic Coupler, Bluetooth N/A N/A N/A 

8300 RS-232, Serial IR, IrDA Acoustic Coupler, RF, Bluetooth N/A RFID N/A 

8400 RS-232 Bluetooth N/A N/A USB 

8500 Serial IR, IrDA Bluetooth GSM RFID N/A 

Note: The Bluetooth profiles supported include SPP, DUN, and HID. 

RS-232 Parameters 
Baud Rate: 115200, 76800, 57600, 38400, 19200, 9600, 4800, 2400 

Data Bits: 7 or 8 

Parity: Even, Odd, or None 

Stop Bit: 1 
Flow Control: RTS/CTS, XON/XOFF, or None 

Serial IR Parameters 
Baud Rate: 115200, 57600, 38400, 19200, 9600 

Data Bits: 8 

Parity: Even, Odd, or None 

Stop Bit: 1 
Flow Control: None 

IrDA, USB Parameters 
Baud Rate: Ignored, included only for compatibility in coding. 

Data Bits: Ignored, included only for compatibility in coding. 

Parity: Ignored, included only for compatibility in coding. 

Stop Bit: Ignored, included only for compatibility in coding. 
Flow Control: Ignored, included only for compatibility in coding. 



  159 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.16.2 RECEIVE & TRANSMIT BUFFERS 

Receive Buffer 

A 256 byte FIFO buffer is allocated for each port. The data successfully received is stored in this 
buffer sequentially (if any error occurs, e. g. framing, parity error, etc., the data is simply 
discarded). However, if the buffer is already full, the incoming data will be discarded and an 
overrun flag is set to indicate this error.  

 

Transmit Buffer 

The system does not allocate any transmit buffer. It simply records the pointer of the string to be 
sent. The transmission stops when a null character (0x00) is encountered. The application program 
must allocate its own transmit buffer and not to modify it during transmission.  

2.16.3 FLOW CONTROL 

To avoid data loss, three options of flow control are supported and done by background 
routines.  

Note: Flow control is only applicable to the direct RS-232 COM port, which is usually 
assigned as COM1. 

1) None: Flow control is disabled. 

2) RTS/CTS: RTS now stands for Ready for Receiving instead of Request To Send, while 
CTS for Clear To Send. The two signals are used for hardware flow control. 

 Transmit 

Transmission is allowed only when the CTS signal is asserted. If the CTS signal is 
negated (= de-asserted) and later becomes asserted again, the transmission is 
automatically resumed by background routines. However, due to the UART design 
(on-chip temporary transmission buffer), up to five characters might be sent after 
the CTS signal is de-asserted. 

 Receive  

The RTS signal is used to indicate whether the storage of receive buffer is free or 
not. If the receive buffer cannot take more than 5 characters, the RTS signal is 
de-asserted, and it instructs the sending device to halt the transmission. When its 
receive buffer becomes enough for more than 15 characters, the RTS signal 
becomes asserted again, and it instructs the sending device to resume 
transmission. As long as the buffer is sufficient (may be between 5 to 15 
characters), the received data can be stored even though the RTS signal has just 
been negated.  

3) XON/XOFF: Instead of using RTS/CTS signals, two special characters are used for 
software flow control — XON (hex 11) and XOFF (hex 13). XON is used to enable 
transmission while XOFF to disable transmission. 

 Transmit 

When the port is opened, the transmission is enabled. Then every character 
received is examined to see if it is normal data or flow control codes.  



160 

 

CipherLab C Programming Guide 

 

If an XOFF is received, transmission is halted. It is resumed later when XON is 
received. Just like the RTS/CTS control, up to two characters might be sent after 
an XOFF is received. 

 Receive  

The received characters are examined to see if it is normal data (which will be 
stored to the receive buffer) or a flow control code (set/reset transmission flag but 
not stored). If the receive buffer cannot take more than 5 characters, an XOFF 
control code is sent. When the receive buffer becomes enough for more than 15 
characters, an XON control code will be sent so that the transmission will be 
resumed. As long as the buffer is sufficient (may be between 5 to 15 characters), 
the received data can be stored even when in XOFF state.  

Note: If receiving and transmitting are concurrently in operation, the XON/XOFF control 
codes might be inserted into normal transmit data string. When using this method, 
make sure that both sides feature the same control methodology; otherwise, dead 
lock might happen. 

 

com_cts  8300, 8400 

Purpose To check the current CTS state on the direct RS-232 port. 

Syntax int com_cts (int port); 

Parameters int port  

1 COM1 for RS-232 port 
 

Example if (com_cts(1) == 0) printf(“COM 1 CTS is negated”); 

    else printf(“COM 1 CTS is asserted”); 

Return Value If asserted, it returns 1. (= mark) 

Otherwise, it returns 0. (= space) 

See Also com_rts 
 

com_rts  8300, 8400 

Purpose To set the RTS signal on the direct RS-232 port.  

Syntax void com_rts (int port, int val); 

Parameters int port  

1 COM1 for RS-232 port 
int val  

0 RTS signal is negated. 
1 RTS signal is asserted. 

 
Example com_rts(1, 1);                           // COM1 is set as RTS asserted 

Return Value None 

Remarks This routine controls the RTS signal. However, RTS might be changed by the 
background routine according to the status of the receive buffer. 

See Also com_cts 
 



  161 

 

 Chapter 2  Mobile-Specific Function Library 

 

clear_com   

Purpose To clear the receive buffer of a specific COM port. 

Syntax void clear_com (int port); 

Parameters Refer to the COM Port Mapping table. 

Example clear_com(1);                  // clear the receive buffer of COM 1 

Return Value None 

Remarks This routine clears all the data stored in the receive buffer. It can be used to 
avoid mis-interpretation when overrun or other error occurs. 

See Also com_overrun 
 

close_com   

Purpose To terminate communications and disable a specified COM port. 

Syntax int close_com (int port); 

Parameters Refer to the COM Port Mapping table. 

Example close_com(4);                  // close COM 4  

Return Value It always returns 1. 

See Also open_com 
 

com_eot   

Purpose To check whether there is any transmission in progress on COM1 or COM2.  

(eot = End Of Transmission) 

Syntax int com_eot (int port); 

Parameters Refer to the COM Port Mapping table. 

Example while (!com_eot(1));         // wait till prior transmission completed

write_com(1, “NEXT STRING”); 

Return Value If transmission is completed, it returns 1. 

Otherwise, it returns 0. 
 

com_overrun   

Purpose To check whether overrun error occurs or not. 

Syntax int com_overrun (int port); 

Parameters Refer to the COM Port Mapping table. 

Example if (com_overrun(1) > 0) clear_com(1);    

// if overrun, data stored in the buffer is not complete, clear them 
all 

Return Value If overrun occurs, it returns 1. 

Otherwise, it returns 0. 

See Also clear_com 
 



162 

 

CipherLab C Programming Guide 

 

nwrite_com   

Purpose To send a number of characters through a specific COM port. 

Syntax int nwrite_com (int port, char *s, int count); 

Parameters int port 

COM port to be used. Refer to the COM Port Mapping table. 
char *s 

Pointer to the string being sent out. 
int count 

The number of characters to be sent. 
 

Example char s[]={“Hello\n”}; 

nwrite_com(1, s, 2);            // send the characters “He” through COM1

Return Value If successful, it returns the character count. (For Bluetooth SPP, it returns 1.) 

Otherwise, it returns 0. 

Remarks This routine sends the characters of a string one by one until the specified 
number of characters are sent out. 

See Also write_com 
 

open_com   

Purpose To enable a specific COM port and initialize communications. 

Syntax int open_com (int com_port, int setting); 

Parameters int com_port 

COM port to be used. Refer to the COM Port Mapping table. 

int setting  

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 

BAUD_115200 

BAUD_76800Note 

BAUD_57600 

BAUD_38400 

BAUD_19200 

BAUD_9600 

BAUD_4800Note  

BAUD_2400Note 

Baud rate (bps) 

 

 

 

 

 

 

 Note: These settings are not applicable to Serial IR. 

0x00 

0x08 

DATA_BIT7 

DATA_BIT8 

Data bits 

0x00 

0x10 

0x30 

PARITY_NONE 

PARITY_ODD 

PARITY_EVEN 

Parity 

 
 



  163 

 

 Chapter 2  Mobile-Specific Function Library 

 

 0x00 

0x40 

HANDSHAKE_NONE 

HANDSHAKE_CTS 

Flow control method 

0xc0 HANDSHAKE_XON  

Wedge Emulator Setting for 8000/8300/8500 Series 
0x8000 WEDGE_EMULATOR Wedge Emulator setting 
Cradle Command Setting for 8000/8300/8500 Series 
0x0100 CRADLE_COMMAND Refer to Appendix IV for cradle 

commands. 
Bluetooth Setting  
0x00 

0x03 

0x04 

0x05 

BT_SERIALPORT_SLAVE 

BT_SERIALPORT_MASTER 

BT_DIALUP_NETWORKING 

BT_HID_DEVICE 

Bluetooth SPP Slave 

Bluetooth SPP Master 

Bluetooth DUN 

Bluetooth HID 
 

Example open_com(1, 0x0b); 

           // open COM 1 to 38400,8 data bits, no parity and no handshake

open_com(4);                         // open COM4 for RFID virtual COM 

Return Value If successful, it returns 1. 

Otherwise, it returns 0 to indicate the port number is invalid. 

Remarks This routine initializes the specific COM port, clears its receive buffer, stops any 
ongoing data transmission, resets COM port status, and configures the COM 
port according to the settings. 

Note that the direct RS-232 port is usually COM1, and the virtual COM port 
assigned for Bluetooth serial port profile is COM2. However, only direct RS-232 
allows for flow control options. 

See Also close_com, SetACTone, SetCommType 
 



164 

 

CipherLab C Programming Guide 

 

read_com   

Purpose To read one character from the receive buffer of a specific COM port. 

Syntax int read_com (int port, char *c); 

Parameters int port 

COM port to be used. Refer to the COM Port Mapping table. 
char *c 

Pointer to the character returned. 
 

Example char c; 

if (read_com(1, c)) 

    printf(“char %c received from COM 1”, *c); 

Return Value If successful, it returns 1. 

Otherwise, it returns 0 to indicate the buffer is empty. 

Remarks This routine reads one byte from the receive buffer and then removes it from 
the buffer. However, if the buffer is empty, it will return 0 for no action is 
taken. 

See Also nwrite_com, write_com 
 
 



  165 

 

 Chapter 2  Mobile-Specific Function Library 

 

SetCommType   

Purpose To set the communication type of a specific COM port. 

Syntax int SetCommType (int port, int type); 

Parameters int port  

COM port to be used. Refer to the COM Port Mapping table. 
int type  

0 COMM_DIRECT Direct RS-232 
1 COMM_DOCKING Via I/O pins of Ethernet, Modem or GPRS 

cradle (8400) 

COMM_IR Via IR transceiver of cradle (8000/8300/8500) 2 

COMM_AUTODETECT See remarks below (8400) 

3 COMM_IrDA Standard IrDA (8000/8300/8500) 
4 COMM_RF RF, Bluetooth (SPP/DUN/HID) 
5 COMM_SMS GSM_SMS (8500) 

COMM_ACOUSTIC Acoustic (8000, 8300)  6 

COMM_GSMMODEM GSM_Modem (8500) 

7 COMM_USBHID USB HID (8400) 

8 COMM_USBVCOM USB Virtual COM (8400) 

9 COMM_USBDISK USB Mass Storage (8400) 
 

Example SetCommType(1, 2);                     // set COM1 to IR communication 

Return Value If successful, it returns 1. 

On error, it returns 0 to indicate the port number or type is invalid. 

Remarks This routine needs to be called BEFORE opening a COM port.  

 For 8000/8300/8500, pass COMM_IR to the 2nd parameter when it requires 
sending cradle commands or establishing a connection via any kind of 
cradle, regardless of the actual interface. 

 For 8400, the argument passed to the 2nd parameter depends on the actual 
interface in use: 

(a) Pass COMM_DIRECT when it requires establishing an RS-232 
connection, via cable or any kind of cradle. 
(b) Pass COMM_USBVCOM when it requires establishing a USB virtual 
COM connection, via cable or any kind of cradle. 
(c) Pass COMM_DOCKING when it requires establishing a connection via 
Ethernet, Modem or GPRS cradle. (RS-232 or USB virtual COM is not the 
desired interface!) 
(d) It is fine to pass the unsupported COMM_IR because 8400 can auto 
detect which condition of the above is met after open_com is called. 

Note that the COM port mapping is different for each model of mobile 
computer, and it may not support all the communication types. 

See Also GetIOPinStatus, open_com, SetACTone 
 



166 

 

CipherLab C Programming Guide 

 

write_com   

Purpose To send a null-terminated string through a specific COM port. 

Syntax int write_com (int port, char *s); 

Parameters int port 

COM port to be used. Refer to the COM Port Mapping table. 
char *s 

Pointer to the string being sent out. 
 

Example char s[]={“Hello\n”}; 

write_com(1, s);              // send the string “Hello\n” through COM1

Return Value If successful, it returns the character count. 

Otherwise, it returns 0. 

Remarks This routine sends a string through a specific COM port. If any prior 
transmission is still in progress, it will be terminated and then the current 
transmission resumes. The characters of a string will be transmitted one by one 
until a NULL character is met. Note that a null string can be used to terminate 
the prior transmission. 

See Also nwrite_com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  167 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.17 TCP/IP COMMUNICATIONS 

2.17.1 NATIVE PROGRAMMING INTERFACE 

 Nopen() is used to establish connections. After the connection is successfully 
established, Nopen() will return a connection number, which is used to identify this 
particular connection in subsequent calls to other TCP/IP stack routines.  

 Nclose() is used to close a specific connection.  

 Nread() and Nwrite() are used to send and receive data on the network. 

Note: Before reading and writing to the remote host, a connection must be established 
or opened. 

Nclose   

Purpose To close a connection. 

Syntax int Nclose (int conno); 

Parameters int conno 

The connection to be closed. This connection number is a return value of 
Nopen(). 

 
Example Nclose(conno); 

Return Value If successful, it returns 0. 

On error, it returns a negative value to indicate a specific error condition. 

See Also Nopen, socket_fin 

 
 



168 

 

CipherLab C Programming Guide 

 

Nopen   

Purpose To open a connection. 

Syntax int Nopen (const char *remote_ip, const char *proto, int lp, int rp, int 
flags); 

Parameters const char *remote_ip 

It can be one of these two forms:  

 “n1.n2.n3.n4” for remote host IP; 

 “*” for any host, passive open. 

const char *proto 

Protocol stack to be used, “TCP/IP” or “UDP/IP”. 

int lp 

Local port number.  

 If this is an active open (client), the local port is often an ephemeral port, 
and a suitable random value can be obtained using Nportno() or set lp to 
0. 

int rp 

Remote port number. 

 For a passive open (server), this value should be specified as 0, and any 
remote port will be accepted for the connection. 

int flags  

0 Normally, its value is set to 0.  

S_NOCON No connection for UDP. 
S_NOWA Non-blocking open 

IPADDR Remote_ip is binary (4 bytes) 
 

Example /* Passive Open (Server) */ 

conno = Nopen(“*”,“TCP/IP”, 2000, 0, 0); 

/* Active Open (Client) */ 

char remote_ip[] = “230.145.22.4”; 

if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0) 

printf(“Fail to connect to Host: %s\r\n”, remote_ip); 

Return Value If successful, it returns the connection number. This is the handle for further 
communication on the connection. 

On error, it returns a negative value to indicate a specific error condition. 

Remarks This routine is used for both active and passive opens. The behavior is 
determined by the parameters supplied to the function.  

 A passive open will wait indefinitely.  

 An active open for TCP will return when the connection has been made, but 
it times out in a couple of minutes if there is no answer. 

 To check whether or not the connection has established, use 
socket_isopen(). 

See Also Nclose, Nportno, socket_ipaddr, socket_isopen 
 



  169 

 

 Chapter 2  Mobile-Specific Function Library 

 

Nread   

Purpose To read a message from a connection. 

Syntax int Nread (int conno, char *buff, int len); 

Parameters int conno 

The connection to be accessed. This connection number is a return value of 
Nopen(). 

char *buff 

Pointer to a receive buffer. 

int len 

Maximum number of bytes to read; normally equals to the size of the buffer. 
 

Example if (socket_hasdata(conno) > 0) 

    Nread(conno, buf, sizeof(buf)); 

Return Value If successful, it returns the number of bytes read. 

Otherwise, it returns 0 to indicate the connection is closed by the remote end.  

On error, it returns a negative value to indicate a specific error condition. 

Remarks This routine reads a number of bytes (len) from a connection (conno) into a 
specified buffer (buff).  

 In blocking mode, this function will block until information is available to be 
read, or until a timeout occurs. The timeout can be adjusted using 
socket_rxtout(). 

 The application can avoid this blocking behavior by using socket_hasdata to 
make sure there is data available before calling Nread().  

 The protocol stack will try to compact all of the data receiving from the 
remote side. This means the data obtained from Nread() maybe comes 
from different packets. 

See Also Nwrite, socket_hasdata, socket_rxtout 
 



170 

 

CipherLab C Programming Guide 

 

Nwrite   

Purpose To write a message to a connection. 

Syntax int Nwrite (int conno, char *buff, int len); 

Parameters int conno 

The connection to be accessed. This connection number is a return value of 
Nopen(). 

char *buff 

Pointer to a send buffer. 

int len 

Maximum number of bytes to write. 
 

Example if (socket_cansend(conno, strlen(buf))) 

    Nwrite(conno, buf, strlen(buf)); 

Return Value If successful, it returns the number of bytes written. 

On error, it returns a negative value to indicate a specific error condition. 

Remarks This routine writes a number of bytes (len) from a specified buffer (buff) to a 
connection (conno).  

 The protocol stack will keep the data and send them in background. 
Normally, this routine will return immediately. However, it will take 1 to 8 
seconds to send the data in the following cases: 

  Case 1 – 

 

 

 

Case 2 - 

In TCP, four packets have been sent, but never get any ACK. 

The protocol stack will try to resend the packets until it times 
out (after 8 seconds). The application can avoid this situation by 
using socket_cansend to make sure the transmission is 
available before calling Nwrite(). 

In UDP, the protocol stack does not get MAC ID of the remote 
side. It will take 1 second to ask the remote side for MAC ID by 
ARP. 

See Also Nread, socket_cansend 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  171 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.17.2 SOCKET PROGRAMMING INTERFACE 

 Include File 
#include <errno.h> 

This header file, “errno.h”, contains the error code definitions. This file should 
normally be placed under the “include” directory of the C compiler – 
“C:\TOSHIBA\INCLUDE\” 

Note: For relevant structures, please refer to the header file for mobile-specific library. 

 Connection-oriented Protocol (TCP) 

For a connection-oriented socket, such as SOCK_STREAM, it provides full-duplex 
connection and must be in a connected state before any data can be sent or received 
on it. A connection to another socket is created with connect(). Once connected, 
data can be transferred using send() and recv(). When a session has been 
completed, closesocket() must be performed. 

 

 

 

 

 

 

 

 

 

 



172 

 

CipherLab C Programming Guide 

 

 Connectionless Protocol (UDP) 

For a connectionless, message-oriented socket, datagrams can be sent to and 
received from a specific connected peer using sendto() and recvfrom() 
respectively. 

 

      

 

 

 

 

 

 

 

 

 

 
 



  173 

 

 Chapter 2  Mobile-Specific Function Library 

 

accept   

Purpose To accept a connection on a socket. 

Syntax int accept (SOCKET s, struct sockaddr *name, int *namelen); 

Parameters SOCKET s 

Descriptor identifying a socket in a listening state. 

struct sockaddr *name 

Pointer to a sockaddr structure, receiving the remote IP address and port 
number. 

int *namelen 

Pointer to an integer containing the length of name. 
 

Example SOCKET listen_socket, remote_socket; 

struct sockaddr_in local_name, remote_name; 

int size_of_name; 

listen_socket = socket(PF_INET, SOCK_STREAM, TCP); 

if (listen_socket < 0) { 

    printf(“SOCKET allocation failed”); 

    ..................... 

} 

memset(&local_name, 0, sizeof(local_name)); 

local_name.sin_family = AF_INET; 

local_name.sin_port = htons(3000); 

if (bind(listen_socket, (struct sockaddr*)&local_name,  

sizeof(local_name)) < 0) { 

    printf(“Error in Binding on socket: %d”, listen_socket); 

..................... 

}  

if (listen(listen_socket, 1)) { 

    printf(“Error in Listening on socket: %d”, listen_socket); 

    ..................... 

} 

size_of_name = sizeof(remote_name); 

remote_socket =  

accept(listen_socket, (struct sockaddr*)&remote_name, &size_of_name);

if (remote_socket < 0) { 

    printf(“Error in accept on socket: %d”, listen_socket); 

    ….................. 

} 

send(remote_socket, “Hello”, strlen (“Hello”),0); 
 



174 

 

CipherLab C Programming Guide 

 

Return Value If successful, it returns a non-negative integer (≥ 0) as a descriptor for the 
accepted socket. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine is used by a server application to perform a passive open, 
permitting a connection request from client. 

 name is a result parameter that is filled in with the address of the 
connecting entity, as known to the communications layer. The exact format 
of the parameter is determined by the address family in which the 
communication is occurring. 

 namelen is a value-result parameter; it initially contains the amount of 
space pointed to by name; on return, it will contain the actual length, in 
bytes, of the address returned. Name is truncated if the buffer provided is 
too small. 

The socket will remain in the listening state until a client establishes a 
connection with the port offered by the server. 

 The connection is actually made with the socket that is returned by this 
routine.  

The original socket remains in the listening state, and can be used in a 
subsequent call to this routine to provide additional connections.  

Note that this is a blocking function. This routine will not return unless there is 
error or a new connection is established. If normal program flow is mandatory 
for the application or the application is going to accept multiple connection 
requests. This routine must be called in a separate task. 

See Also connect, listen, select 
 

bind   

Purpose To bind a name to a newly created socket. 

Syntax int bind (SOCKET s, struct sockaddr *name, int namelen); 

Parameters SOCKET s 

Descriptor identifying an unbound socket. 

struct sockaddr *name 

Pointer to a sockaddr structure containing the local IP address and listening 
port to be bounded. 

int namelen 

Length of name. 
 

Example SOCKET s; 

struct sockaddr_in name; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 

    printf(“SOCKET allocation failed”); 

    ..................... 

} 

memset(&name, 0, sizeof(name)); 

name.sin_family = AF_INET; 
 



  175 

 

 Chapter 2  Mobile-Specific Function Library 

 

 name.sin_port = htons(3000);  

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) { 

printf(“Error in Binding on socket: %d”, s); 

    ..................... 

} 

Return Value If successful, it returns 0.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine binds the local IP address and listening port number information to 
the socket specified.  

 For connection-oriented sockets (passive open), this routine must be called 
before calling listen() and accept(). 

 The socket specified must be a valid descriptor returned from a previous 
call to the socket() routine. 

 The local IP address specified can be left out as 0. The application can use 
getsockname() to learn the address and port that has been assigned to it. 

 If it is other than 0, this routine will verify this information against the 
actual local IP address of the local device. 

See Also connect, getsockname, listen, socket 
 

closesocket   

Purpose To close a socket and release the connection block. 

Syntax int closesocket (SOCKET s); 

Parameters SOCKET s 

Descriptor identifying a socket. 
 

Example SOCKET s; 

.............. 

if (closesocket(s) < 0) { 

    printf(“closesocket fails on socket: %d”, s); 

    ................... 

} 

Return Value If successful, it returns 0.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

See Also shutdown, socket 
 



176 

 

CipherLab C Programming Guide 

 

connect   

Purpose To initiate a connection on a socket. 

Syntax int connect (SOCKET s, struct sockaddr *name, int namelen); 

Parameters SOCKET s 

Descriptor identifying a socket. 

struct sockaddr *name 

Pointer to a sockaddr structure containing the remote IP address and port 
number. 

int namelen 

Length of name. 
 

Example SOCKET s; 

struct sockaddr_in name; 

struct hostent *phostent; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 

    printf(“SOCKET allocation failed”); 

................... 

} 

memset(&name, 0, &sizeof(name)); 

name.sin_family = AF_INET; 

name.sin_port = htons(3000); 

phostent = gethostbyname(“server1.cipherlab.com.tw”); 

if (!phostent) { 

    printf(“Can not get IP from DNS server”);  

    ................... 

} 

memcpy(&name.sin_addr, phostent->h_addr_list[0], 4); 

if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0) { 

printf(“Error in Establishing connection”); 

    ................... 

} 

Return Value If successful, it returns 0.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine establishes a connection to a specified socket. It performs an 
active open (client mode), allowing a client application to establish a 
connection with a remote server. When it completes successfully, the socket is 
ready to send/recv data. 

See Also accept, getpeername, getsockname, listen, select, socket 

 
 



  177 

 

 Chapter 2  Mobile-Specific Function Library 

 

fcntlsocket   

Purpose To provide file control over descriptors. 

Syntax int fcntlsocket (int fildes, int cmd, int arg); 

Parameters int fildes 

Descriptor to be operated on by cmd as described below. 

int cmd  

O_NDELAY Non-blocking 

FNDELAY O_NDELAY Synonym 

F_GETFL Get descriptor status flags. (arg is ignored) 
F_SETFL Set descriptor status flags to arg. 
int arg 

Depending on the value of cmd, it can take an additional third argument arg. 
 

Example (...)   

Return Value If successful, it returns a non-negative value depending on cmd.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

 

gethostbyname   

Purpose To get the IP address of the specified host from DNS server.  

Syntax struct hostent *gethostbname (const char *hnp); 

Parameters const char *hnp 

Pointer to a buffer containing a null-terminated hostname. 
 

Example SOCKET s; 

struct sockaddr_in name; 

struct hostent *phostent; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 

    printf(“SOCKET allocation failed”); 

    ....................... 

} 

memset(&name, 0, sizeof(name)); 

name.sin_family = AF_INET; 

name.sin_port = htons(3000); 

phostent = gethostbyname(“server1.cipherlab.com.tw”); 

if (!phostent) { 

    printf(“Can not get IP from DNS server”); 

    ....................... 

} 
 



178 

 

CipherLab C Programming Guide 

 

 memcpy(&name.sin_addr, phostent->h_addr_list[0], 4); 

if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0) 

{ 

printf(“Error in Establishing connection”); 

    ....................... 

} 

Return Value If successful, it returns a pointer. 

On error, it returns a NULL pointer. 

Remarks This routine searches for information by the given hostname specified by the 
character-string parameter hnp.  

It then returns a pointer to a struct hostent structure describing an internet 
host referenced by name. 

 The IP address of DNS server must be specified when calling 
SetNetConfig(). Or, it can be automatically retrieved from DHCP server, if 
DhcpEnable is set. 

See Also DNS_resolver 
 

getpeername   

Purpose To get name of a connected peer.  

Syntax int getpeername (SOCKET s, struct sockaddr *name, int *namelen); 

Parameters SOCKET s 

Descriptor identifying a socket. 

struct sockaddr *name 

Pointer to a sockaddr structure receiving the remote IP address and port 
number. 

int *namelen 

Pointer to an integer containing the length of name. 
 

Example SOCKET s; 

struct sockaddr_in remote_name; 

int size_of_name; 

........................ 

size_of_name = sizeof(remote_name); 

if (getpeername(s, (struct sockaddr*)&remote_name, &size_of_name) < 0) 
{ 

    printf(“Can not get remote name info”); 

    ....................... 

} 
 



  179 

 

 Chapter 2  Mobile-Specific Function Library 

 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine returns the name of the peer connected to socket s. It only can be 
used on a connected socket. 

 name is a result parameter that is filled in with the address of the 
connecting entity, as known to the communications layer. The exact format 
of the parameter is determined by the address family in which the 
communication is occurring. 

 namelen is a value-result parameter; it initially contains the amount of 
space pointed to by name; on return, it will contain the actual length, in 
bytes, of the address returned. name is truncated if the buffer provided is 
too small. 

See Also connect, getsockname 
 

getsockname   

Purpose To get socket name.  

Syntax int getsockname (SOCKET s, struct sockaddr *name, int *namelen); 

Parameters SOCKET s 

Descriptor identifying a socket. 

struct sockaddr *name 

Pointer to a sockaddr structure receiving the local IP address and port 
number. 

int *namelen 

Pointer to an integer containing the length of name. 
 

Example SOCKET s; 

struct sockaddr_in local_name; 

int size_of_name; 

........................ 

size_of_name = sizeof(local_name); 

if (getsockname(s, (struct sockaddr*)&local_name, &size_of_name) < 0) 
{ 

printf(“Can not get local name info”);  

    ....................... 

} 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine returns the current name for bound or connected socket s. It is 
especially useful when a connect() call has been made without doing a bind 
first. 

 name is a result parameter that is filled in with the address of the 
connecting entity, as known to the communications layer. The exact format 
of the parameter is determined by the address family in which the 
communication is occurring. 

 



180 

 

CipherLab C Programming Guide 

 

  namelen is a value-result parameter; it initially contains the amount of 
space pointed to by name; on return, it will contain the actual length, in 
bytes, of the address returned. Name is truncated if the buffer provided is 
too small. 

See Also bind, connect, getpeername 
 

getsockopt   

Purpose To get options on a socket. 

Syntax int getsockopt (SOCKET s, int level, int optname, char *optval, int 
*optlen); 

Parameters SOCKET s 

Descriptor identifying a socket. 

int level 

Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or 
IPPROTO_IP 

int optname 

Socket option for which the value is to be retrieved. 

For example, the following options are recognized – 

 SOL_SOCKET 

SO_DEBUG Enable recording of debugging information 

SO_REUSEADDR Enable local address reuse 

SO_KEEPALIVE Enable sending keep-alives 

SO_DONTROUTE Enable routing bypass for outgoing messages 

SO_BROADCAST Enable permission to transmit broadcast 
messages 

SO_BINDTODEVICE (…) 

SO_LINGER Return the current Linger option 

SO_OOBINLINE Enable reception of out-of-band data in band 

SO_SNDBUF Get buffer size for sends 

SO_RCVBUF Get buffer size for receives 

SO_ERROR Get and clear error on the socket 

SO_TYPE Get the type of the socket 

 IPPROTO_TCP 

TCP_MAXSEG Get TCP maximum-segment size 

TCP_NODELAY Disable the Nagle algorithm for send coalescing 

 IPPROTO_IP 

IP_OPTIONS Get IP header options 
 
char *optval 

Pointer to a buffer where the value for the requested option is to be returned. 
 

 



  181 

 

 Chapter 2  Mobile-Specific Function Library 

 

 int *optlen 

Pointer to an integer containing the size of the buffer, in bytes. On return, it 
will be set to the size of the value returned. 
 

Example (...) 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine retrieves the current value for a socket option associated with a 
socket of any type, in any state, and stores the result in optval. Although 
options may exist at multiple protocol levels, they are always present at the 
uppermost socket level. Options affect socket operations, such as the packet 
routing and OOB data transfer. 

 To manipulate options at the socket level, level is specified as 
SOL_SOCKET. 

 To manipulate options at any other level, the protocol number of the 
appropriate protocol controlling the option is supplied. 

See Also setsockopt 
 

inet_addr   

Purpose To convert an IP address string in standard dot notation to a network byte 
order unsigned long integer. 

Syntax unsigned long inet_addr (char *dotted); 

Parameters char *dotted 

An IP address in standard dot notation to be converted. 
 

Example struct sockaddr_in name; 

name.sin_addr .s_addr = inet_addr(“192.168.1.1”); 

Return Value It returns a value of conversion. 

See Also inet_ntoa 
 

inet_ntoa   

Purpose To convert an IP address stored in in_addr structure to a string in standard dot 
notation. 

Syntax char *inet_ntoa (struct in_addr addr); 

Parameters struct in_addr addr 

An in_addr structure containing the IP address to be converted. 
 

Example struct sockaddr_in name; 

char ip_addr[16]; 

strcpy(ip_addr, inet_ntoa(name.sin_addr)); 

printf(“Remote IP: %s”, ip_addr); 

Return Value It returns a pointer to the string. 

See Also inet_addr 
 



182 

 

CipherLab C Programming Guide 

 

ioctlsocket   

Purpose To provide controls on the I/O mode of a socket. 

Syntax int ioctlsocket (int fildes, int request, …); 

Parameters int fildes 

Descriptor to open file. 
 

Example (...) 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine manipulates the underlying device parameters of special files.  

 In particular, many operating characteristics of character special files may 
be controlled with ioctlsocket() requests. 

See Also fcntlsocket 
 

listen   

Purpose To listen for connections on a socket. 

Syntax int listen (SOCKET s, int backlog); 

Parameters SOCKET s 

Descriptor identifying a bound, unconnected socket. 

int backlog 

Number of connections that will be held in a queue waiting to be accepted. 
 

Example SOCKET s; 

struct sockaddr_in name; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 

    printf(“SOCKET allocation failed”); 

    ................... 

} 

memset(&name, 0, sizeof(name)); 

name.sin_family = AF_INET; 

name.sin_port = htons(3000); 

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) { 

    printf(“Error in Binding on socket: %d”, s); 

    ................... 

} 

if (listen(s, l) { 

    printf(“Error in Listening on socket: %d”, s); 

................... 

} 
 



  183 

 

 Chapter 2  Mobile-Specific Function Library 

 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine is used with connection-oriented socket type SOCK_STREAM; it is 
part of the sequence of routines that are called to perform a passive open. 
listen() puts the bound socket in a state in which it is listening up to a backlog 
number of connection requests from clients. 

 The socket is put into passive open where incoming connection requests 
are acknowledged and queued pending acceptance by the accept() process. 

 This routine is typically used by servers that can have more than one 
connection request at a time. If a connection request arrives and the queue 
is full, the client will receive an error.  

 If there are no available socket descriptors, listen() attempts to continue to 
function. When descriptors become available, a later call to listen() or 
accept() will refill the queue to the current or most recent backlog, if 
possible, and resume listening for incoming connections. 

 If listen() is called on an already listening socket, it will return success 
without changing the backlog. Setting the backlog to 0 in a subsequent call 
to listen() on a listening socket is not considered a proper reset, especially 
if there are connections on the socket.  

See Also accept, connect 
 

recv   

Purpose To receive data from a connected or bound socket. 

Syntax int recv (SOCKET s, char *buf, int len, int flags); 

Parameters SOCKET s 

Descriptor identifying a connected socket. 

char *buf 

Pointer to a buffer where data is received. 

int len 

Maximum number of bytes to be received. 

int flags  

MSG_OOB Receive urgent data (out-of-bound data). 

MSG_PEEK Receive data but do not remove it from the input 
queue, allowing it to be read again on 
subsequent calls (peek at incoming data). 

 
Example SOCKET s; 

char buf[1024]; 

int len; 

............... 

if (socket_hasdata(s)) { 

len = recv(s, buf, sizeof(buf), 0); 

if (len < 0) { 

        printf(“recv fails on socket: %d”, s); 
 



184 

 

CipherLab C Programming Guide 

 

         ................ 

} 

} 

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of 
bytes received and stored into buffer.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine reads incoming data from a specified buffer (buf) on a connected 
socket.  

 select() may be used to determine when more data arrives. 

 The application can avoid this blocking behavior by using socket_hasdata() 
to make sure there is data available before calling recv(). 

See Also recvfrom, select, send, socket_hasdata 
 

recvfrom   

Purpose To receive data from a socket and stores the source address. 

Syntax int recvfrom (SOCKET s, char *buf, int len, int flags, struct sockaddr 
*from, int *fromlen); 

Parameters SOCKET s 

Descriptor identifying a connected socket. 

char *buf 

Pointer to a buffer where data is received. 

int len 

Maximum number of bytes to be received. 

int flags  

MSG_OOB Receive urgent data (out-of-bound data). 

MSG_PEEK Receive data but do not remove it from the input 
queue, allowing it to be read again on 
subsequent calls (peek at incoming data). 

struct sockaddr *from 

Pointer to sockaddr structure that will hold the source address upon return. 

int *fromlen 

Pointer to an integer containing the length of from. 
 

Example (...) 

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of 
bytes received and stored into buffer.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine reads incoming data from a specified buffer (buf), and captures 
the address from which the data was sent. It is typically used on a 
connectionless socket. 

 



  185 

 

 Chapter 2  Mobile-Specific Function Library 

 

  If from is not a null pointer, the source address of data is filled in.  

 fromlen is a value-result argument, initialized to the size of the buffer 
associated with from, and modified on return to indicate the actual size of 
the address stored there. 

 select() may be used to determine when more data arrives. 

 The application can avoid this blocking behavior by using socket_hasdata() 
to make sure there is data available before calling recvfrom(). 

See Also recv, select, send, socket_hasdata 
 

select   

Purpose To synchronize I/O multiplexing. 

Syntax int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, 
struct timeval *timeout); 

Parameters int nfds 

Descriptor identifying a set of sockets to be checked -  from 0 through nfds 
-1 in the descriptor sets are examined. 

fd_set *readfds, *writefds, *exceptfds 

Any of readfds, writefds, and exceptfds may be given as null pointers if no 
descriptors are of interest. 

struct timeval *timeout 

Pointer to a zero-valued timeval structure, specifies the maximum interval to 
wait for the selection to complete. 

 System activity can lengthen the interval by an indeterminate amount.  

 If it is a null pointer, the select blocks indefinitely.  
Example (...) 

Return Value If successful, it returns the number of ready descriptors.  

If the time limit expires, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine examines the I/O descriptor sets whose addresses are passed in 
readfds, writefds, and exceptfds to see if some of their descriptors are ready 
for reading, are ready for writing, or have an exceptional condition pending, 
respectively.  

 The only exceptional condition detectable is out-of-band data received on a 
socket.  

 On return, this routine replaces the given descriptor sets with subsets 
consisting of those descriptors that are ready for the requested operation. 
It returns the total number of ready descriptors in all the sets.  

The descriptor sets are stored as bit fields in arrays of integers.  

 The following are provided for manipulating such descriptor sets. Their 
behavior is undefined if a descriptor value is less than zero or greater than 
or equal to FD_SETSIZE, which is normally at least equal to the maximum 
number of descriptors supported by the system. 

FD_SETSIZE 8 The maximum number of descriptors is 8. 

FD_SET (n, p) ((p) -> fds_bits [(n) >>3 ] |= (1 << ((n) & 7))) 
 

 



186 

 

CipherLab C Programming Guide 

 

 FD_CLR (n, p) ((p) -> fds_bits [(n) >>3 ] &= ~(1 << ((n) & 7))) 

FD_ISSET (n, p) ((p) -> fds_bits [(n) >>3 ] & (1 << ((n) & 7))) 

FD_ZERO (p) memset ((void *) (p), 0, sizeof (*(p))) 
 

See Also accept, connect, recv, send 
 

send   

Purpose To send data to a connected socket. 

Syntax int send (SOCKET s, char *buf, int len, int flags); 

Parameters SOCKET s 

Descriptor identifying a connected socket. 

char *buf 

Pointer to a buffer where data is to be sent. 

int len 

Maximum number of bytes to be sent. 

int flags  

MSG_OOB Send urgent data (out-of-bound data). 

MSG_DONTROUTE Send data using direct interface (bypass 
routing). 

 
Example SOCKET s; 

char buf[1024]; 

int len, tlen; 

................... 

len = strlen(buf); 

tlen = send(s, buf, len, 0); 

if (tlen < 0) { 

        printf(“send fails on socket: %d”, s); 

        ................... 

} 

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of 
bytes sent.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine writes outgoing data to a specified send buffer (buf) on a 
connected socket. 

 The whole data may not be sent at one time. Check the return value in 
case the send buffer overflows. 

 The application can avoid this blocking behavior by using socket_cansend() 
to make sure there is data available before calling send(). 

See Also recv, sendto, socket_cansend 
 



  187 

 

 Chapter 2  Mobile-Specific Function Library 

 

sendto   

Purpose To send data to a connected socket. 

Syntax int sendto (SOCKET s, char *buf, int len, int flags, struct sockaddr *to, int 
tolen); 

Parameters SOCKET s 

Descriptor identifying a connected socket. 

char *buf 

Pointer to a buffer where data is to be sent. 

int len 

Maximum number of bytes to be sent. 

int flags  

MSG_OOB Send urgent data (out-of-bound data). 

MSG_DONTROUTE Send data using direct interface (bypass 
routing). 

struct sockaddr *to 

Pointer to sockaddr structure containing the address of the target socket. 

int tolen 

Length of address indicated by to. 
 

Example (...) 

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of 
bytes sent.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine writes outgoing data to a specified send buffer (buf) on a 
connected socket.  

 The address of the targe is given by to with tolen specifying its size. The 
length of the message is given by len. It is typically used on a 
connectionless socket.  

 The whole data may not be sent at one time. Check the return value in 
case the send buffer overflows. 

 The application can avoid this blocking behavior by using socket_cansend() 
to make sure there is data available before calling send(). 

See Also recvfrom, sendto, socket_cansend 
 

setsockopt   

Purpose To set options on a socket. 

Syntax int setsockopt (SOCKET s, int level, int optname, char *optval, int 
*optlen); 

Parameters SOCKET s 

Descriptor identifying a socket. 
 

 



188 

 

CipherLab C Programming Guide 

 

 int level 

Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or 
IPPROTO_IP 

int optname 

Socket option for which the value is to be set. 

For example, the following options are recognized - 

 SOL_SOCKET 

SO_DEBUG Enable recording of debugging information 

SO_REUSEADDR Enable local address reuse 

SO_KEEPALIVE Enable sending keep-alives 

SO_DONTROUTE Enable routing bypass for outgoing messages 

SO_BROADCAST Enable permission to transmit broadcast 
messages 

SO_BINDTODEVICE (...) 

SO_LINGER Linger on close if unsent data is present 

SO_OOBINLINE Enable reception of out-of-band data in band 

SO_SNDBUF Set buffer size for sends 

SO_RCVBUF Set buffer size for receives 

 IPPROTO_TCP 

TCP_NODELAY Disable the Nagle algorithm for send coalescing 

 IPPROTO_IP 

IP_OPTIONS Set IP header options 
 
char *optval 

Pointer to a buffer where the value for the option is specified. 

int *optlen 

Pointer to an integer containing the size of the buffer, in bytes. 
 

Example (...) 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine sets the current value for a socket option associated with a socket 
of any type, in any state. Although options may exist at multiple protocol 
levels, they are always present at the uppermost socket level. Options affect 
socket operations, such as the packet routing and OOB data transfer. 

When manipulating socket options, the level at which the option resides and 
the name of the option must be specified.  

 To manipulate options at the socket level, level is specified as 
SOL_SOCKET. 

 To manipulate options at any other level, the protocol number of the 
appropriate protocol controlling the option is supplied. 

 



  189 

 

 Chapter 2  Mobile-Specific Function Library 

 

See Also getsockopt 
 

shutdown   

Purpose To shut down part of a TCP connection. 

Syntax int shutdown (SOCKET s, int how); 

Parameters SOCKET s 

Descriptor identifying a socket. 

int how  

0 Shut down receive data path 
1 Shut down send data path and send FIN (final) 

2 Shut down both receive and send data path 
 

Example SOCKET s; 

................... 

if (shutdown(s, 2) < 0) { 

    printf(“shutdown fails on socket: %d”, s); 

    ................... 

} 

Return Value If successful, it returns 0.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine shuts down part of a previously established TCP connection.  

 Even if both receive and send data path are shut down, closesocket() must 
be called to actually close the socket. 

See Also closesocket 
 

socket   

Purpose To create a socket that is bound to a specific service provider. 

Syntax SOCKET socket (int domain, int type, int protocol); 

Parameters int domain 

Protocol family; this should always be PF_INET or AF_INET. 

int type, protocol 

Depending on the socket type specified, the protocol to be used can be TCP, 
UDP, or ICMP. 

Type Protocol  

SOCK_STREAM TCP Stream socket 
SOCK_DGRAM UDP Datagram socket 

SOCK_RAW ICMP Raw-protocol interface 
 

Example SOCKET s; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 
 



190 

 

CipherLab C Programming Guide 

 

 printf(“SOCKET allocation fails”); 

................ 

} 

Return Value If successful, it returns a non-negative integer (≥ 0) as a descriptor referencing 
the socket.  

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. 

Remarks This routine creates an endpoint for communication and returns a descriptor.  

 domain specifies a communications domain within which communication 
will take place; this selects the protocol family which should be used. 

 The socket has the indicated type, which specifies the semantics of 
communication. 

 protocol specifies a particular protocol to be used with the socket. Normally 
only a single protocol exists to support a particular socket type within a 
given protocol family. However, it is possible that many protocols may 
exist, in which case a particular protocol must be specified in this manner. 
The protocol number to use is particular to the “communication domain” in 
which communication is to take place. 

See Also accept, bind, closesocket, connect, getpeername, getsockname, getsockopt, 
ioctlsocket, listen, recv, recvfrom, select, send, sendto, setsockopt, shutdown 

 

 

 

 

 

 

 

 

 

 
 



  191 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.17.3 BYTE SWAPPING 

htonl   

Purpose To convert an unsigned long integer from host byte order to network byte 
order. 

Syntax unsigned long htonl (unsigned long val); 

Parameters unsigned long val 

An unsigned long integer to be converted. 
 

Example (...)   

Return Value It returns the value of conversion. 

See Also ntohl 
 

htons   

Purpose To convert an unsigned (short) integer from host byte order to network byte 
order. 

Syntax unsigned htons (unsigned val); 

Parameters unsigned val 

An unsigned integer to be converted. 
 

Example struct sockaddr_in name; 

s = socket(PF_INET, SOCK_STREAM, TCP); 

if (s < 0) { 

    printf(“SOCKET allocation failed”); 

    ....................... 

} 

memset(&name, 0, sizeof(name)); 

name.sin_family = AF_INET; 

name.sin_port = htons(3000);  

Return Value It returns the value of conversion. 

See Also ntohs 
 

ntohl   

Purpose To convert an unsigned long integer from network byte order to host byte 
order. 

Syntax unsigned long ntohl (unsigned long val); 

Parameters unsigned long val 

An unsigned long integer to be converted. 
 

Example (...)  

Return Value It returns the value of conversion. 

See Also htonl 
 



192 

 

CipherLab C Programming Guide 

 

ntohs   

Purpose To convert an unsigned (short) integer from network byte order to host byte 
order. 

Syntax unsigned ntohs (unsigned val); 

Parameters unsigned val 

An unsigned integer to be converted. 
 

Example struct sockaddr_in name; 

int port; 

....................... 

port = ntohs(name.sin_port); 

printf(“Remote Port: %d”, port); 

Return Value It returns the value of conversion. 

See Also htons 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  193 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.17.4 SUPPLEMENTAL FUNCTIONS 

Other useful functions for obtaining additional information or setting control for a 
connection are described below. 
 

DNS_resolver   

Purpose To get the remote IP address by remote name. 

Syntax int DNS_resolver (const char *remote_host, unsigned char *remote_ip); 

Parameters const char *remote_host 

Pointer to a buffer where the remote hostname is stored. 

unsigned char *remote_ip 

Pointer to a buffer where the remote host IP is returned. 
 

Example char IP[4]; 

DNS_resolver(“www.cipherlab.com.tw”, IP); 

Return Value If successful, it returns 0. 

On error, it returns a negative value. 

Remarks It is necessary to define the DNS server IP before calling this function. 

See Also gethostbyname 
 

Nportno   

Purpose To get an ephemeral port number. 

Syntax int Nportno (void); 

Example if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0) 

    printf(“Fail to connect Host: %s\r\n”, remote_ip); 

Return Value It always returns the port number. 

Remarks This function generates a random local port number, which is used in a active 
open call to the Nopen() function. 

See Also Nopen 
 

socket_block   

Purpose To set the connection for blocking operation. 

Syntax int socket_block (int conno); 

Parameters int conno 

Connection number 
 

Example socket_block(conno); 

Return Value If successful, it returns 0. 

On error, it returns -1. 

Remarks This function sets non-blocking operation back to blocking operation. 

 Blocking operation is the default behavior for network functions. When in 
blocking operation, calls to network functions will run to completion, or 
return a timeout error if an associated time limit is run out. 

 



194 

 

CipherLab C Programming Guide 

 

See Also socket_noblock 
 

socket_cansend   

Purpose To check if data can be sent immediately. 

Syntax int socket_cansend (int conno, unsigned int len); 

Parameters int conno 

Connection number 

unsigned int len 

Number of bytes to write. 
 

Example if (socket_cansend(conno, strlen(buf))) 

    Nwrite (conno, buf, strlen(buf)); 

Return Value If okay, it returns a non-zero value. 

Otherwise, it returns 0. 

See Also Nwrite 
 

socket_fin   

Purpose To set the FIN flag on the next outgoing TCP segment. 

Syntax int socket_fin (int conno); 

Parameters int conno 

Connection number 
 

Example val = socket_fin(conno); 

Return Value If successful, it returns 0. 

Otherwise, it returns -1. 

Remarks The next TCP segment to be written, following a call to this function, will have 
the FIN flag set in the TCP header.  

 This is useful for shutting down a connection at the same time that the last 
segment is sent. After that, call Nclose() to finish closing the connection.  

Note that Nclose() will not send a FIN segment in this case. 

See Also Nclose 
 

socket_hasdata   

Purpose To check if data is available to be read. 

Syntax int socket_hasdata (int conno); 

Parameters int conno 

Connection number 
 

Example if (socket_hasdata(conno)) 

    Nread(conno, buf, sizeof(buf)); 

Return Value If available, it returns a non-zero value. 

Otherwise, it returns 0. 

See Also Nread, recv 
 



  195 

 

 Chapter 2  Mobile-Specific Function Library 

 

socket_ipaddr   

Purpose To get the IP address of the remote end of a connection. 

Syntax int socket_ipaddr (int conno, unsigned char *ipaddr); 

Parameters int conno 

Connection number 

unsigned char *ipaddr 

Pointer to a buffer where the IP address is returned. 
 

Example unsigned char ip[4]; 

socket_ipaddr(conno, ip); 

printf(“Remote IP: %d.%d.%d.%d\r\n”, ip[0], ip[1], ip[2], ip[3]); 

Return Value If successful, it returns 0. 

On error, it returns -1. 

Remarks This function copies the remote host IP address of the connection specified by 
conno into a buffer indicated by ipaddr. No string terminator is appended by 
this function. 

See Also getpeername 
 

socket_isopen   

Purpose To check if the remote end of a connection is open. 

Syntax int socket_isopen (int conno); 

Parameters int conno 

Connection number 
 

Example if (socket_isopen(conno)) printf(“connected!!”); 

Return Value If connected, it returns a non-zero value. 

Otherwise, it returns 0. 

Remarks This function checks if the remote end has entered the ESTABLISHED state. 
(TCP only) 

See Also Nopen 
 

socket_keepalive  

Purpose To set the dummy sending period for a connection. 

Syntax int socket_keepalive (int conno, unsigned long val); 

Parameters int conno 

Connection number 

unsigned long val 

Dummy sending period given in milli-second. 

 Set to 0 to disable dummy sending.  
Example val = socket_keepalive(conno, p); 

Return Value It returns 0. 
 



196 

 

CipherLab C Programming Guide 

 

Remarks In some special application, the remote end will auto-disconnect if it never 
receives any packet in a certain period of time. This function will send an 
empty packet to the remote end to avoid such problem. (TCP only) 

 

socket_noblock   

Purpose To set the connection for non-blocking operation. 

Syntax int socket_noblock (int conno); 

Parameters int conno 

Connection number 
 

Example socket_noblock(conno); 

Return Value If successful, it returns 0. 

On error, it returns -1. 

Remarks This function sets non-blocking operation. When in non-blocking operation, 
calls to network functions, which normally have to wait for network activity to 
be completed, will return the negative value EWOULDBLOCK when such a 
condition is encountered. 

See Also socket_block 
 

socket_push   

Purpose To set the PSH flag on the next outgoing TCP segment. 

Syntax int socket_push (int conno); 

Parameters int conno 

Connection number 
 

Example val = socket_push(conno); 

Return Value If successful, it returns 0. 

Otherwise, it returns -1. 

Remarks The next TCP segment to be written, following a call to this function, will have 
the PSH flag set in the TCP header.  

 This is useful for indicating to the TCP on the remote system that all 
internally buffered segments up through this segment should be delivered 
to the application as soon as possible. 

See Also socket_fin 
 

socket_rxstat   

Purpose To get the receive status for a connection. 

Syntax int socket_rxstat (int conno); 

Parameters int conno 

Connection number 
 

Example val = socket_rxstat(conno); 

Return Value Return Value  

0x01 S_EOF FIN has been received. 

0x02 S_UNREA Destination unreachable ICMP. 
 

 



  197 

 

 Chapter 2  Mobile-Specific Function Library 

 

 0x04 S_FATAL Fatal error. 

0x08 S_RST Restart message received. 

0x10 S_SHUTRECV Receive has been shutdown (active, not by receiving 
FIN). 

 
See Also socket_txstat 

 

socket_rxtout   

Purpose To set the receive timeout for a connection. 

Syntax int socket_rxtout (int conno, unsigned long val); 

Parameters int conno 

Connection number 

unsigned long val 

Time interval given in milli-second. 
 

Example val = socket_rxtout(conno, timeout); 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable errno is set to indicate the error 
condition encountered. Refer to the header files for error codes. 

 

socket_state   

Purpose To get the socket status for a connection. 

Syntax char socket_state (int conno); 

Parameters int conno 

Connection number 
 

Example val = socket_state(conno); 

Return Value Return Value  

1 ESTABLISHED  

2 SYN_SENT  

3 SYN_RECEIVED  

4 LISTEN  

5 CLOSING  
 

See Also socket_rxstat, socket_txstat 
 

socket_testfin   

Purpose To check if the remote end has closed the connection. (TCP only) 

Syntax int socket_testfin (int conno); 

Parameters int conno 

Connection number 
 

Example if (socket_testfin(conno)) Nclose(conno); 

Return Value If closed, it returns a non-zero value. 

Otherwise, it returns 0. 
 



198 

 

CipherLab C Programming Guide 

 

See Also Nclose 
 

socket_txstat   

Purpose To get the transmit status for a connection. 

Syntax int socket_txstat (int conno); 

Parameters int conno 

Connection number 
 

Example val = socket_txstat(conno); 

Return Value Return Value  

0x01 S_PSH Push 

0x08 S_FIN_SENT FIN has been sent. 
0x10 S_FIN_ACKED My FIN has been ACKED. 

0x20 S_PASSIVEOPEN Originally a passive open. (for simultaneous active 
open) 

 
See Also socket_rxstat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  199 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18 WIRELESS NETWORKING 

This section describes the routines related to wireless network configuration. These 
command sets are only applicable to the mobile computers according to their hardware 
configuration. Refer to Appendix VII — Examples. 

 WLAN stands for IEEE 802.11b/g 

 PAN stands for Personal Area Networking Profile of Bluetooth 

 SPP  stands for Serial Port Profile of Bluetooth 

 DUN  stands for Dial-Up Networking Profile of Bluetooth for connecting a modem 

 DUN-GPRS stands for Dial-Up Networking Profile of Bluetooth for activating a mobile's 
GPRS 

 HID stands for Human Interface Device Profile of Bluetooth 

 GSM  stands for Global System for Mobile Communications 

 GPRS  stands for General Packet Radio Service 

Wireless Product Family 

 Bluetooth WLAN ( 802.11b/g) GSM/GPRS 

Mobile Computer    

8062 9 8 8 

8071 8 9 8 

8330 9 9 8 

8362 9 8 8 

8370 8 9 8 

8400 9 8 8 

8470 9 9 8 

8500 9 8 8 

8570 9 9 8 

8580 9 8 9 

8590 9 9 9 

Note: Refer to the previous section for port mapping of Bluetooth and GSM. 

 

 

 

 

 

 



200 

 

CipherLab C Programming Guide 

 
 

 Include File 

All programs that call TCP/IP stack routines need to contain the following include 
statement. 

#include <8xtcpip.h> 

This header file, “8xtcpip.h”, contains the function prototypes (declarations) and error 
code definitions. This file should normally be placed under the “include” directory of 
the C compiler - C:\C_Compiler\INCLUDE\ 

 Library File 

All the TCP/IP stack routines have been built into a library file, such as “83WLAN.lib”, 
“83BNEP.lib”, “80WLAN.lib”, and “80BNEP.lib”. This file should be specified in the link 
file of the user program. It will ask the linker program to search for the TCP/IP 
Networking routines during linking process. This file should normally be placed under 
the “lib” directory of the C compiler - C:\C_Compiler\LIB\ 

Below is an example of link file (partial). 

/*** Link File ***/ 

     -lm -lg -ll 

      

     tnet.rel 

 

     83wlan.lib 

     8300lib.lib 

     c900ml.lib 

Note: The three library files must be in the above sequence. That is, “83WLAN.lib” must 
be specified first, then “8300lib.lib”, and finally the standard C library file 
“c900ml.lib”. 

 

 

 
 

 
 



  201 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18.1 NETWORK CONFIGURATION 

Before bringing up (initializing) the network, some related parameters must be 
configured. These parameters are grouped into a structure, NETCONFIG or BTCONFIG 
or GSMCONFIG or PPPCONFIG structure, and are saved in the system. They are kept 
by the system during normal operations and power on/off cycles.  

Refer to Appendix V — Net Parameters by Index. 

Note: Only one network interface can be used at a time: 802.11b/g or PAN. 

These parameters can be accessed through System Menu or an application program (via 
GetNetParameter, SetNetParameter, and some specific routines as shown below). 

Note: The parameters will be set back to the default values when updating kernel. 
 

GetNetParameter  

Purpose To retrieve one networking configuration item from the system. 

Syntax void GetNetParameter (void *return-value, int index); 

Parameters See Appendix V — Net Parameters by Index. 

Example int DhcpEnable; 

unsigned char IP[4]; 

.................... 

DhcpEnable = 1; 

SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE); 

 

if (NetInit() < 0) { 

    printf(“Initialization Fail”); 

    ............................. 

} 

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5); 

 

GetNetParameter((void*)&IP, P_LOCAL_IP); 

printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]); 

Return Value None 

Remarks This routine gets one network configuration item from the system.  

 Make sure the size of return-value is suitable to the configuration type. 

See Also SetNetParameter 
 
 
 



202 

 

CipherLab C Programming Guide 

 

SetNetParameter  

Purpose To write one networking configuration item to the system. 

Syntax void SetNetParameter (void *setting, int index); 

Parameters See Appendix V — Net Parameters by Index. 

Example int DhcpEnable; 

unsigned char IP[4]; 

.................... 

DhcpEnable = 1; 

SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE); 

if (NetInit() < 0) { 

    printf(“Initialization Fail”); 

    ............................. 

} 

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5); 

 

GetNetParameter((void*)&IP, P_LOCAL_IP); 

printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]); 

Return Value None 

Remarks This routine writes one network configuration item to the system.  

 Use NetInit() to initialize networking according to the configurations 
written. 

See Also GetNetParameter 

 
 

 

 
 
 
 



  203 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18.2 INITIALIZATION & TERMINATION 

After the networking parameters are properly configured, an application program can call 
NetInit() to initialize any wireless module (802.11b/g, Bluetooth, or GSM/GPRS) and 
networking protocol stack. 

 The wireless modules will not be powered until NetInit() is called. 

 When an application program needs to stop using the network, NetClose() must be 
called to shut down the network as well as the modules (so that power can be saved). 
To enable the network again, NetInit() must be called again. 

Note: Any previous network connection and data will be lost after calling NetClose(). 

8000 Series 

NetInit() Enables Bluetooth (PAN) 8062 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

8071 NetInit() Enables 802.11b/g (WLAN) 

8300 Series 

NetInit() 

NetInit(0L) 

Enables 802.11b/g (WLAN) 

NetInit(1L) Enables Bluetooth (PAN) 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

8330 

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem) 

NetInit() Enables Bluetooth (PAN) 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

8362 

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem) 

NetInit() Enables 802.11b/g (WLAN) 8370 

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem) 

8400 Series 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 8400 

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem) 

NetInit() 

NetInit(0L) 

Enables 802.11b/g (WLAN) 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

8470 

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem) 

8500 Series 

NetInit(1L) Enables Bluetooth (PAN) 8500 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 



204 

 

CipherLab C Programming Guide 

 

NetInit() 

NetInit(0L) 

Enables 802.11b/g (WLAN) 

NetInit(1L) Enables Bluetooth (PAN) 

8570 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

NetInit(1L) Enables Bluetooth (PAN) 

NetInit(2L) Enable GPRS 

8580 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

NetInit() 

NetInit(0L) 

Enables 802.11b/g (WLAN) 

NetInit(1L) Enables Bluetooth (PAN) 

NetInit(2L) Enable GPRS 

8590 

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN) 

All Series 

via Modem 
Cradle 

NetInit(4L) Enables PPP connection via Cradle-IR or direct connection 

via Ethernet 
Cradle 

NetInit(6L) Enables Ethernet connection via Cradle-IR or direct connection 

Note: NetInit(7L) is used to enable GPRS connection via 8400 GPRS Cradle only. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  205 

 

 Chapter 2  Mobile-Specific Function Library 

 

NetInit   

Purpose To initialize networking. 

Syntax int NetInit (void); 

int NetInit (unsigned long mode); 

Parameters unsigned long mode  

0L WLAN_NETWORKING Enable 802.11b/g (WLAN) 

1L BLUETOOTH_NETWORKING Enable Bluetooth (PAN) 

2L GPRS_NETWORKING Enable GPRS 

3L BT_GPRS_NETWORKING Enable mobile's GPRS functionality 
via Bluetooth (DUN) 

4L IR_PPP_NETWORKING 

CRADLE_PPP_NETWORKING 

Enable PPP connection via Modem 
Cradle 

5L RS232_PPP_NETWORKING Enable PPP connection via direct 
RS-232 (to a generic modem) 

6L IR_MODE_NETWORKING 

CRADLE_MODE_NETWORKING 

Enable Ethernet connection via 
Ethernet Cradle 

7L GPRS_CRADLE_NETWORKING Enable GPRS connection via GPRS 
Cradle 

 
Example struct NETSTATUS ns; 

.................... 

if (NetInit() < 0) { 

    printf(“Initialization Fail”); 

............................. 

} 

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5); 

Return Value If successful, it returns 0. 

On error, it returns -1. (Usually it is caused by hardware problems.) 

Remarks This routine initializes the wireless module and TCP/IP networking protocol 
stack. Some part of the initialization is done in a background system task. 
When this routine returns, the initialization process might not yet been done.  

 It is necessary for the application to check the status of IPReady (see 
NetStatus) before performing any networking operations. 

 For 8400 GPRS Cradle, it returns -1 when calling NetInit(7L) in the 
following conditions: (1) PIN code and GPRS AP name are not configured 
correctly via AT commands, and (2) CHAP settings are not configured 
correctly on 8400. 

See Also CheckNetStatus, NetClose 

 
 



206 

 

CipherLab C Programming Guide 

 

NetClose   

Purpose To close network connections. 

Syntax int NetClose (void); 

Example val = NetClose(); 

Return Value It returns 0. 

Remarks This routine closes network connections.  

 Networking can be restarted by calling NetInit(). 

See Also NetInit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  207 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18.3 NETWORK STATUS 

Once networking has been initialized, information on networking status can be retrieved 
from the system. This status information is grouped into a structure, NETSTATUS or 
RADIOSTATUS or BTSTATUS or GSMSTATUS, and the system will periodically update 
it.  

User program must explicitly call CheckNetStatus() to get the latest status. Refer to 
Appendix VI — Net Status by Index. 

Note: Only one network interface can be used at a time: 802.11b/g or PAN. 

 
 

CheckNetStatus  

Purpose To check on networking status from the system. 

Syntax int CheckNetStatus (int index); 

Parameters See Appendix VI — Net Status by Index. 

Example int DhcpEnable; 

unsigned char IP[4]; 

.................... 

    DhcpEnable = 1; 

    SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE); 

 

    if (NetInit() < 0) { 

        printf(“Initialization Fail”); 

        ............................. 

    } 

    while (!CheckNetStatus(NET_IPReady)) OSTimeDly(10); 

 

    GetNetParameter((void*)&IP, P_LOCAL_IP); 

    printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]); 

Return Value See values listed in NETSTATUS, RADIOSTATUS, BTSTATUS, and GSMSTATUS 
structures. 

See Also GetBTStatus, GetNetStatus 
 

 

 

 

 

 
 
 



208 

 

CipherLab C Programming Guide 

 

2.18.4 IEEE 802.11 b/g 

IEEE 802.11b/g is an industrial standard for Wireless Local Area Networking (WLAN), 
which enables wireless communications over a long distance. The speed of connection 
between two wireless devices will vary with range and signal quality.  

To maintain a reliable connection, the data rate of the 802.11b/g system will 
automatically fallback as range increases or signal quality decreases.  

802.11 Specification 
Frequency Range: 2.4 GHz 
Data Rate: 802.11b - 1, 2, 5.5, 11 Mbps 

802.11g - 6, 9, 12, 18, 24, 36, 48, 54 Mbps 

Connected Devices: 1 for ad-hoc mode (No AP) 

Multiple for infrastructure mode (AP required) 

Protocol: IP/TCP/UDP 
Max. Output Power: 50 mW (802.11b) 

Spread Spectrum: DSSS 
Modulation: 802.11b - DBPSK (1 Mbps), DQPSK (2 Mbps), CCK (5.5 & 11 Mbps) 

802.11g - OFDM 

Standard: IEEE 802.11b/g, interoperable with Wi-Fi devices 

Note: All specifications are subject to change without prior notice. 

 

 

 
 

 

 

 

 

 

 

 
 



  209 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18.5 NETCONFIG STRUCTURE (802.11b/g) 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

 

struct NETCONFIG { 

    int DhcpEnable; 

    unsigned char IpAddr[4]; 

    unsigned char SubnetMask[4]; 

    unsigned char DefaultGateway[4]; 

    unsigned char DnsServer[4]; 

    char DomainName[129]; 

    char LocalName[33]; 

    char SSID[33]; 

    int SystemScale; 

    WLAN_FLAG Flag; 

    int WepLen; 

    int DefaultKey; 

    unsigned char WepKey[4][14]; 

    char EapID[33]; 

    char EapPassword[33]; 

    unsigned char WPAPassphrase[64]; 

    unsigned char WPApmk[32]; 

    unsigned char WPAchk[2]; 

    unsigned char CurrentBSSID[6]; 

    unsigned char FixedBSSID[6]; 

    int iRoamingTxLimit_11b; 

    int iRoamingTxLimit_11g; 

char ReservedByte[54]; 

}; 
 



210 

 

CipherLab C Programming Guide 

 

Note: Only one network interface can be used at a time: 802.11b/g or PAN. 

Parameter Default Description WLAN SPP PAN 

int DhcpEnable 1 0: disable DHCP 

1: enable DHCP 

9  9 

unsigned char IpAddr[4] 0.0.0.0 Local IP Address 9  9 

unsigned char 
SubnetMask[4] 

0.0.0.0 Subnet Mask 9  9 

unsigned char 
DefaultGateway[4] 

0.0.0.0 IP address of Default Gateway or 
router 

9  9 

unsigned char 
DnsServer[4] 

0.0.0.0 IP address of DNS server 9  9 

char DomainName[129] Null Domain Name Read 
only 

 Read 
only 

char LocalName[33] S/N Local hostname.  

By default, it shows the serial 
number of mobile computer. 

9 9 9 

char SSID[33] Null Service Set ID or AP name, which 
is used for Remote Device 
association. 

9   

int SystemScale 2 Access Point Density, determines 
when the mobile computer should 
look for other AP that has better 
signal strength. 

1: Low 

2: Medium 

3: High 

4: Customized 

9   

unsigned int WLAN_FLAG 0x19 See WLAN_FLAG Structure 9   

int WepLen 1 0: 64 bits Wep Key  

(5 bytes to be configured for the 
WepKey parameter) 

1: 128 bits Wep Key  

(13 bytes to be configured for the 
WepKey parameter) 

9   

int DefaultKey 0 Use default Wep Key 0 9   

unsigned char 
WepKey[4][14] 

Null WEP Key 0 ~ 3 9   

 



  211 

 

 Chapter 2  Mobile-Specific Function Library 

 

char EapID[33] Null ID used to associate to Cisco® APs  9   

char EapPassword[33] Null Password used to associate to 
Cisco® APs 

9   

unsigned char 
WPAPassphrase[64] 

Null WPA-PSK, WPA2-PSK (Pre-Shared 
Key mode) — Passphrase to access 
the network: 8~63 characters 

9   

unsigned char 
WPApmk[32] 

Null Stored Pre-Shared Key, generated 
based on SSID and Passphrase 

9   

unsigned char WPAchk[2] Null Checksum to detect if any changes 
made to SSID or Passphrase. (If 
yes, the Pre-Shared Key will be 
re-generated.) 

9   

unsigned char 
CurrentBSSID[6] 

Null Current Basic Service Set ID 9   

unsigned char 
FixedBSSID[6] 

Null Use AP’s MAC address as current 
Basic Service Set ID 

9   

int iRoamingTxLimit_11b 2 This parameter only works with 
“customized” system scale. 
Roaming starts when the data 
transmission rate gets lower than 
the specified value. 

1: 1 Mbps 

2: 2 Mbps 

4: 5.5 Mbps 

8: 11 Mbps 

9   

int iRoamingTxLimit_11g 8 This parameter only works with 
“customized” system scale. 
Roaming starts when the data 
transmission rate gets lower than 
the specified value. 

1: 1 Mbps 

2: 2 Mbps 

4: 5.5 Mbps 

8: 11 Mbps 

16: 6 Mbps 

32: 9 Mbps 

48: 12 Mbps 

64: 18 Mbps 

80: 24 Mbps 

96: 36 Mbps 

112: 48 Mbps 

128: 54 Mbps 

9   

char ReservedByte[54] Null Reserved    

 
 



212 

 

CipherLab C Programming Guide 

 

WLAN_FLAG STRUCTURE 

typedef struct { 

    unsigned int Authen: 1; 

    unsigned int Wep: 1; 

    unsigned int Eap: 1; 

    unsigned int PWRSave: 1; 

    unsigned int Preamble: 2; 

    unsigned int AdHoc: 1; 

    unsigned int WPA_PSK: 1; 

    unsigned int WPA2_PSK: 1; 

    unsigned int Reservedflag: 7; 

} WLAN_FLAG; 

Note: Only one network interface can be used at a time: 802.11b/g or PAN. 

Parameter Bit Default Description WLAN PAN 

unsigned int Authen 0 1 0: Share Key 

1: Open System 

9  

unsigned int Wep 1 0 0: WEP Key disable 

1: WEP Key enable 

9  

unsigned int Eap 2 0 0: EAP disable 

1: EAP enable 

9  

unsigned int PWRSave 3 1 0: Power-saving disable 

1: Power-saving enable 

9  

unsigned int Preamble 4-5 1 0: reserved 

1: long preamble 

2: short preamble 

3: both 

9  

unsigned int AdHoc 6 0 Ad-hoc mode 

0: disable 

1: enable 

9  

unsigned int WPA_PSK 7 0 0: WPA-PSK disable 

1: WPA-PSK enable 

9  

unsigned int WPA2_PSK 8 0 0: WPA2-PSK disable 

1: WPA2-PSK enable 

9  

unsigned int Reservedflag 9-15 0 Reserved   
 



  213 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetNetConfig  8000, 8300, 8500 

Purpose To retrieve the whole networking configurations from the system. 

Syntax void GetNetConfig (struct NETCONFIG *config); 

Example struct NETCONFIG nc; 

struct NETSTATUS ns; 

................... 

GetNetConfig(&nc); 

nc.DhcpEnable = 1; 

SetNetConfig(&nc); 

if (NetInit() < 0) { 

    printf(“Initialization Fail”); 

    ............................ 

} 

do { 

OSTimeDly(10); 

    GetNetStatus(&ns); 

} while (!ns.IPReady); 

Return Value None 

Remarks This routine gets the whole network configurations from the system. It is useful 
when the application wants to change more than one of the configuration 
parameters.  

 The application should reserve enough stack or define a static variable to 
store the structure of NETCONFIG.  

 It is recommended to use GetNetParameter() to get the parameters for the 
stability and compatibility in the future. 

See Also GetNetParameter, SetNetConfig 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



214 

 

CipherLab C Programming Guide 

 

SetNetConfig  8000, 8300, 8500 

Purpose To write the whole networking configurations to the system. 

Syntax void SetNetConfig (struct NETCONFIG *config); 

Example struct NETCONFIG nc; 

struct NETSTATUS ns; 

................... 

GetNetConfig(&nc); 

nc.DhcpEnable = 1; 

SetNetConfig(&nc); 

if (NetInit() < 0) { 

    printf(“Initialization Fail”); 

    ............................ 

} 

do { 

    OSTimeDly(10); 

    GetNetStatus(&ns); 

} while (!ns.IPReady); 

Return Value None 

Remarks This routine writes the whole network configurations to the system. Before 
writing, the application should make sure that every setting is significant. The 
best way is calling GetNetConfig() first to get the original settings and change 
them one by one.  

 The application should reserve enough stack or define a static variable to 
store the structure of NETCONFIG. 

 It is recommended to use SetNetParameter() to set the parameters for the 
stability and compatibility in the future. NetInit() will initialize the 
networking according to the configurations written. 

See Also GetNetConfig, SetNetParameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  215 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.18.6 NETSTATUS STRUCTURE (802.11b/g) 

User program must explicitly call CheckNetStatus() to get the latest status. Refer to 
Appendix VI — Net Status by Index. 

 

struct NETSTATUS { 

    int State; 

    int Quality; 

    int Signal; 

    int Noise; 

    int Channel; 

    int TxRate; 

    int IPReady; 

}; 

Parameter Description Value Index 

int State Connection State 0 

1 

NET_DISCONNECTED 

NET_CONNECTED 

0 

int Quality Link Quality 0 ~ 10 

10 ~ 15 

15 ~ 30 

30 ~ 50 

50 ~ 80 

Very poor 

Poor 

Fair 

Good 

Very good 

1Note 

int Signal  Signal Strength 
Level 

0 ~ 30 

30 ~ 60 

over 60 

Weak 

Moderate 

Strong 

2Note 

int Noise Noise Level 1 

2 ~ 3 

4 ~ 5 

Weak 

Moderate 

Strong 

3Note 

Note: Instead of using indexes 1~3, we suggest using indexes 14~16 for 802.11b/g 
modules. 

int Channel Current Channel 
Number 

1 ~ 11  4 

int TxRate Current Transmit 
Rate 

1 

2 

4 

8 

1 Mbps 

2 Mbps 

5.5 Mbps 

11 Mbps 

5 

 



216 

 

CipherLab C Programming Guide 

 

  16 

32 

48 

64 

80 

96 

112 

128 

6 Mbps  

9 Mbps 

12 Mbps  

18 Mbps  

24 Mbps 

36 Mbps  

48 Mbps 

54 Mbps 

5 

int IPReady Mobile Computer – 

IP Status for both 
WLAN and 
Bluetooth 

-1 

0 

1 

ErrorNote 

Not Ready 

Ready 

6 

 

Note: If CheckNetStatus(IPReady) returns -1, it means an abnormal break occurs during 
PPP, DUN-GPRS, or GPRS connection. Such disconnection may be caused by the 
mobile computer being out of range, improperly turned off, etc. 

 



  217 

 

 Chapter 2  Mobile-Specific Function Library 

 

GetNetStatus  8000, 8300, 8500 

Purpose To retrieve status information on wireless networking from the system. 

Syntax void GetNetStatus (struct NETSTATUS *ns); 

Example struct NETSTATUS ns; 

.................... 

GetNetStatus(&ns); 

printf(“Link Quality: %d”,ns.Quality); 

Return Value None 

Remarks It is recommended to use CheckNetStatus() for the stability and compatibility 
in the future.  

See Also CheckNetStatus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



218 

 

CipherLab C Programming Guide 

 

2.18.7 RADIOSTATUS STRUCTURE (802.11b/g) 

User program must explicitly call CheckNetStatus() to get the latest status. Refer to 
Appendix VI — Net Status by Index. 

 

struct RADIOSTATUS { 

    int SNR; 

    int RSSI; 

    int NoiseFloor; 

}; 

Parameter Description Value Index 

int SNR Signal to Noise 
ratio (dB) 

0 ~ 10 

10 ~ 20 

20 ~ 30 

30 ~ 40 

over 40 

Very poor 

Poor 

Fair 

Good 

Very good 

14 

int RSSI Received Signal 
Strength Indication 
(-dBm) 

0 ~ 60 

60 ~ 75 

over 75 

Strong 

Moderate 

Weak 

15 

int NoiseFloor Noise Floor (-dBm) 0 ~ 92 

92 ~ 98 

over 98 

Strong 

Moderate 

Weak 

16 

 

Note: Indexes 14~16 are only valid for 8000/8300/8400 with 802.11b/g module. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  219 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.19 BLUETOOTH 

Refer to Appendix VII — Examples. 

Serial Port Profile (SPP) 
For ad-hoc networking, without going through any access point. 

 

Dial-Up Networking Profile (DUN) 
For a mobile computer to make use of a Bluetooth modem or mobile phone as a wireless modem. 
Also, it can be used to activate the GPRS functionality on a mobile phone. 

 

Human Interface Device Profile (HID) 
For a mobile computer to work as an input device, such as a keyboard for a host computer. 

 

Personal Area Networking Profile (PAN) 
For a mobile computer to make use of Bluetooth Network Encapsulation Protocol (BNEP) for IP 
networking over Bluetooth. Access points (AP) are required. 

 Use the same functions as for WLAN (802.11b/g) - TCP/IP networking. 
 

 

Bluetooth Specification 
Frequency Range: 2.4 GHz 
Connected Devices: 1 for DUN mode; up to 7 for SPP or PAN mode (AP required) 

Profiles: SPP, DUN, HID, PAN 

Spread Spectrum: FHSS 
Modulation: GFSK 
Standard: Bluetooth version 2.0 + EDR 

Note: All specifications are subject to change without prior notice. 
 



220 

 

CipherLab C Programming Guide 

 

Below are available libraries that support DUN-GPRS mode. 

Hardware Configuration External Libraries Required 

8000 Series 8062 – Bluetooth 80PPP.lib OR 80BNEP.lib 

8330 – Bluetooth + 802.11b/g 83PPP.lib OR 83NetCombo.lib 8300 Series 

 8362 – Bluetooth 83PPP.lib OR 83BNEP.lib 

8400 – Bluetooth  84PPP.lib 8400 Series 

 8470 – Bluetooth + 802.11b/g 84PPP.lib OR 84WLAN.lib 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  221 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.19.1 BTCONFIG STRUCTURE 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

 

typedef struct { 

char BTRemoteName[20]; 

unsigned char BTPINCode[16]; 

unsigned char BTLinkKey[16]; 

BTSearchInfo Dev[8]; 

BT_FLAG Flag; 

unsigned char BTGPRSAPname[20]; 

char ReservedByte[220]; 

} BTCONFIG; 
 

Parameter Default Description Index 

char BTRemoteName[20] Null ID used for Remote Device association 25 

unsigned char 
BTPINCode[16] 

Null PIN Code for pairing (usually in Slave mode) 27 

unsigned char 
BTLinkKey[16] 

Null Link Key generated by pairing --- 

BTSearchInfo Dev[8] Null See BTSearchInfo Structure 40-47 

BT_FLAG Flag --- See BT_FLAG Structure 26, 28, 29 

unsigned char 
BTGPRSAPname[20] 

Null Name of Access Point for Bluetooth DUN-GPRS 
connection 

32 

char ReservedByte[220] Null Reserved --- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



222 

 

CipherLab C Programming Guide 

 

BT_FLAG STRUCTURE 

typedef struct { 

unsigned int BTPWRSaveON: 1; 

unsigned int BTSecurity: 1; 

unsigned int BTBroadcastON: 1; 

unsigned int Reservedflag: 13; 

} BT_FLAG; 
 

Parameter Bit Default Description Index 

unsigned int BTPWRSaveON 0 1 Bluetooth Power-saving 

0: disable 

1: enable 

29 

unsigned int BTSecurity 1 

 

 

0 Bluetooth Security 

0: disable 

1: enable 

26 

unsigned int 
BTBroadcastON  

2 1 Bluetooth broadcasting 

0: disable 

1: enable 

28 

unsigned int Reservedflag 3-15 0 Reserved --- 

Note: When Bluetooth security is enabled without providing a pre-set PIN code, dynamic 
input of PIN code is supported. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  223 

 

 Chapter 2  Mobile-Specific Function Library 

 

BTSEARCHINFO STRUCTURE 

typedef struct { 

unsigned char Machine; 

unsigned char ADDR[6]; 

unsigned char Name[12]; 

unsigned char PINCode[16]; 

unsigned char LinkKey[16]; 

} BTSearchInfo; 

size = 51 bytes 

Parameter Default Description Index 

unsigned char Machine 0 Host profile indication 

0: empty 

1: AP 

3: SPP 

4: DUN 

(If bit 7=1, it means the device is currently 
connected.) 

40-47 

unsigned char ADDR[6] Null Host MAC ID  

unsigned char Name[12] Null HostName  

unsigned char PINCode[16] Null PIN code for pairing (Master mode)  

unsigned char LinkKey[16] Null Link Key generated by pairing  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



224 

 

CipherLab C Programming Guide 

 

GetBTConfig  8000, 8300, 8500 

Purpose To retrieve the whole Bluetooth configurations from the system. 

Syntax void GetBTConfig (BTCONFIG *config); 

Example (...) 

Return Value None 

Remarks This routine gets the whole Bluetooth configurations from the system. It is 
useful when the application wants to change more than one part of the 
configuration parameters.  

 The application should reserve enough stack or define a static variable to 
store the structure of NETCONFIG.  

 It is recommended to use GetNetParameter() to get the parameters for the 
stability and compatibility in the future. 

See Also GetNetParameter, SetBTConfig 
 

SetBTConfig  8000, 8300, 8500 

Purpose To write the whole Bluetooth configurations to the system. 

Syntax void SetBTConfig (BTCONFIG *config); 

Example (...) 

Return Value None 

Remarks This routine writes the whole network configurations to the system. Before 
writing, the application should make sure that every setting is significant. The 
best way is calling GetBTConfig() first to get the original settings and change 
them one by one.  

 The application should reserve enough stack or define a static variable to 
store the structure of BTCONFIG.  

 It is recommended to use SetNetParameter() to set the parameters for the 
stability and compatibility in the future. NetInit() will initialize the 
networking according to the configurations written. 

See Also GetBTConfig, SetNetParameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  225 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.19.2 BTSTATUS STRUCTURE 

User program must explicitly call CheckNetStatus() to get the latest status. Refer to 
Appendix VI — Net Status by Index. 

 

typedef struct { 

    int State; 

    int Signal; 

    int Reserved[10]; 

} BTSTATUS; 
 

Parameter Description Value Index 

int State Connection State 0 

1 

BT_DISCONNECTED 

BT_CONNECTED 

7 

int Signal  RSSI Signal Level -10 ~ -6 

-6 ~ 5 

over 5 

Weak 

Moderate 

Strong 

8 

int Reserved[10] Reserved Null --- --- 
 

 

GetBTStatus  8000, 8300, 8500 

Purpose To retrieve status information on Bluetooth networking from the system. 

Syntax void GetBTStatus (BTSTATUS *bs); 

Example (...) 

Return Value None 

Remarks It is recommended to use CheckNetStatus() for the stability and compatibility 
in the future.  

See Also CheckNetStatus 

 
 
 
 



226 

 

CipherLab C Programming Guide 

 

2.19.3 FREQUENT DEVICE LIST 

Through the pairing procedure, the mobile computer is allowed to keep record of the 
latest connected device(s) for different Bluetooth services, regardless of authentication 
enabled or not. Such record is referred to as “Frequent Device List”. 

Service Type In Frequent Device List 

Network Access Point PAN  Max. 8 devices (e.g. access points) are listed for roaming 
purpose. 

Serial Port  SPP Only 1 device is listed for quick connection. 

Dial-up Networking DUN Only 1 device is listed for quick connection. 

Human Interface Device HID Only 1 device is listed for quick connection. 

Refer to BTSearchInfo structure for details. 

Get Frequent Device List 

The length of Frequent Device List by calling GetNetParameter() is 51 characters: 

BTSearchInfo DeviceA; 

GetNetParameter(&DeviceA, 40); 

Set Frequent Device List 

To enable quick connection to a specific device without going through the inquiry and pairing 
procedure, a user-definable Frequent Device List can be set up by calling SetNetParameter().  

 If there is an existing Frequent Device List generated from the inquiry and pairing procedure, it 
then may be partially or overall updated by this, and vice versa.   

 There are five fields: Service Type, MAC ID, Device Name, PIN Code, and Link Key. If 
authentication is disabled, you only need to specify the first three fields. Otherwise, the PIN 
code field needs to be specified for generating Link Key. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  227 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.19.4 INQUIRY 

To complete the pairing procedure, it consists of two steps: (1) to discover the Bluetooth 
devices within range, and (2) to page one of them that provides a particular service. 
These are handled by BTInquiryDevice() and BTPairingTest() respectively. 

 Once the pairing procedure is completed and the list is generated, next time the 
mobile computer will automatically connect to the listed device(s) without going 
through the pairing procedure. 

 

BTInquiryDevice  

Purpose To discover any nearby Bluetooth devices. 

Syntax int BTInquiryDevice (BTSearchInfo *Info, int max); 

Parameters BTSearchInfo *Info  

Pointer to BTSearchInfo structure where the information of paired devices is 
stored. 
int max 

Maximum number of Bluetooth devices that can be inquired. 
 

Example BTSearchInfo Info[4]; 

int Rst; 

........ 

Rst = BTInquiryDevice(&Info, 4); 

if (Rst) { 

    printf(“Find %d devices in range”, Rst); 

    ............ 

} 

Return Value It returns information on the devices discovered. Refer to BTSearchInfo 
structure. 

Remarks This routine gets information on Bluetooth devices nearby.  

 It will take about 20 seconds to find devices.   

See Also BTPairingTest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



228 

 

CipherLab C Programming Guide 

 

2.19.5 PAIRING 

According to the search results for nearby Bluetooth devices, the application can then try 
to pair with any of the remote devices by calling BTPairingTest(). 
 

BTPairingTest   

Purpose To pair with one Bluetooth device. 

Syntax int BTPairingTest (BTSearchInfo *Info, int TargetMachine); 

Parameters BTSearchInfo *Info 

Pointer to BTSearchInfo structure where the information of paired devices is 
stored. 
int Targetmachine  

1 BTNetworkAccessPoint Bluetooth Network Access Point service 

3 BTSerialPort Bluetooth Serial Port service 

4 BTDialUpNetworking Bluetooth Dial-up Networking service 
 

Example BTSearchInfo Info[4]; 

int Rst; 

........ 

Rst = BTInquiryDevice(&Info, 4); 

if (Rst) { 

    printf(“Find %d devices in range”, Rst); 

    Rst = BTPairingTest(Info[0], BTSerialPort); 

if (Rst) printf(“Pair OK”); 

    else printf(“Pair Fail”); 

    ............ 

} 

Return Value If successful, it returns 1. 

On error, it returns 0. 

Remarks This routine tries to pair with one Bluetooth device with matching type of 
service (AP, SPP, or DUN) specified by TargetMachine.  

 Once pairing successfully, the MAC ID, PIN Code, and Link Key of this 
remote device will be updated to the Frequent Device List. 

See Also BTInquiryDevice 

 
 
 
 
 



  229 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.19.6 USEFUL FUNCTION CALL 

We also provide some simple function calls for pairing with a Bluetooth device easily. 
 

BTPairingTestMenu  

Purpose To create a menu and try to pair with one Bluetooth device. 

Syntax void BTPairingTestMenu (void); 

Example See sample code. 

Return Value None 

Remarks Once pairing successfully, the MAC ID of this remote device will be updated to 
the Frequent Device List. 

See Also BTPairingTest, FreqDevListMenu 
 

FreqDevListMenu  

Purpose To create a menu (Frequent Device List) listing all the devices that the mobile 
computer frequently connects to. 

Syntax void FreqDevListMenu (void); 

Example See sample code. 

Return Value None 

See Also BTPairingTestMenu 
 

 

               
 
Sample Code 

==================================================================== 

#include <8000lib.h> 

#include <ucos.h> 

 

static const MENU_ENTRY PAIRING_ENTRY; 

static const MENU_ENTRY DEVICELIST_ENTRY; 

 

MENU SPP_MENU =  

{2, 1, 0, “Bluetooth”, {(void*)&PAIRING_ENTRY, (void*)&DEVICELIST_ENTRY}}; 
 



230 

 

CipherLab C Programming Guide 

 

static const MENU_ENTRY PAIRING_ENTRY = {0, 1, “1 Pairing”, BTPairingTestMenu, 0}; 

static const MENU_ENTRY DEVICELIST_ENTRY = {0, 2, “2 Dev. List”, FreqDevListMenu, 0}; 

main() 

{ 

while (1) prc_menu((void*)&SPP_MENU); 

} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  231 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.20 GSM/GPRS 

Data services of GSM, including SMS (Short Message Service) and data call, are provided 
for receiving and sending data. They are performed via a virtual COM port, namely, 
COM3. The communication types, COMM_SMS and COMM_GSMMODEM, which are for 
SMS and data call respectively, should be assigned by calling SetCommType() before 
use. The COMM_SMS supports uncompressed PDU (Protocol Description Unit) message 
mode. It can handle both 7-bit default alphabet and 8-bit data. In addition, concatenated 
messages are also supported.  

Refer to Appendix VII — Examples. 

read_com data format 

For SMS service, the data format for single messages and concatenated messages is different. The 
short messages will be removed from the SIM card after being read out. If it is necessary to save 
the received data, data storage structure like a DAT or DBF file is recommended. 

Message Type Single Message Concatenated Message 

Using 7-bit default alphabet total length ≤ 160 characters total length > 160 characters 

Using 8-bit total length ≤ 140 octets total length > 140 octets 

Using 16-bit total length ≤ 70 characters total length > 70 characters 
 
 

 Single Message: 

 The diagram below shows the data format for a single message received by calling 
read_com(). The data length is the number of octets of data. 

 

Example: 

20050401140506+32<0x0d><0x0a>+886920123456<0x0d><0x0a><0x0A> 

HelloHello 

 
 

 Concatenated Message: 

 The whole data will be separated into several sections. 

The diagram below shows the data format for a concatenated message received by calling 
read_com(). The data length is the number of octets of data. 

  
 



232 

 

CipherLab C Programming Guide 

 

 Example: 

#<0x40><0x02><0x02><0x0d><0x0a>20050401140506+32<0x0d><0x0a> 

+886920123456<0x0d><0x0a><0x0A>HelloHello 

 
 

nwrite_com data format 

For sending a message, the maximum length is limited to 255 characters.  

 For long messages (see Message Type - Concatenated Message above), data will be sent 
successfully by using nwrite_com(), and then each message will be separated into sections 
intentionally. 

 The sending data buffer will not be overwritten until com_eot (3) returns 1 to indicate the 
transmission is completed. 

The data format for sending a message is as shown below. 

Example: 0920123456<0x0d><0x0a><0x0A>HelloHello 

 

 
 



  233 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.20.1 GSMCONFIG STRUCTURE (GSM/GPRS) 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

 

typedef struct { 

    unsigned char SMServiceCenter[21]; 

    unsigned char PINCode[9]; 

    unsigned char GPRSAccessPoint[21]; 

    unsigned char NET[21]; 

    unsigned char ModemDialNum[21]; 

    GPRS_FLAG Flag; 

    char CHAPPassword[33]; 

    char CHAPUserName[33]; 

    char ReservedByte[95]; 

} GSMCONFIG; 
 

Parameter Default Description Index 

unsigned char SMService 
Center[21] 

Null Current address of SMSC (Short Message 
Service Center) stored on SIM card 

60 

unsigned char PINCode[9] Null PIN (Personal Identity Number) code of SIM 
card; an access code of 4~8 digits 

61 

unsigned char 
GPRSAccessPoint[21] 

Null AP name for GPRS 62 

unsigned char NET[21] Null Name of GSM network operator 63 

unsigned char 
ModemDialNum[21] 

Null Phone number of the receiver of GSM data 
service 

64 

GPRS_FLAG Flag --- See GPRS_FLAG Structure 65 

char CHAPPassword[33] Null Password for Challenge Handshake 
Authentication Protocol (CHAP) 

66 

char CHAPUserName[33] Null User name for Challenge Handshake 
Authentication Protocol (CHAP) 

67 

char ReservedByte[95] Null Reserved --- 

 
 
 
 
 
 
 
 
 
 



234 

 

CipherLab C Programming Guide 

 

GPRS_FLAG STRUCTURE 

typedef struct { 

    unsigned int CHAPEnable: 0; 

    unsigned int Reservedflag: 15; 

} GPRS_FLAG; 
 

Parameter Bit Default Description Index 

unsigned int CHAPEnable 15 0 Challenge Handshake Authentication 
Protocol 

0: disable 

1: enable 

65 

unsigned int Reservedflag 0-14 Null Reserved --- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  235 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.20.2 GSMSTATUS STRUCTURE (GSM/GPRS) 

User program must explicitly call CheckNetStatus() to get the latest status. Refer to 
Appendix VI — Net Status by Index. 

 

typedef struct { 

    int GSMstatus; 

    int GSMRSSIlevel; 

    int PINstatus; 

    int Reserved[9]; 

} GSMSTATUS; 
 

Parameter Description Value Index 

int GSMstatus Connection State 0 

1 

GSMGPRS_DISCONNECTED 

GSMGPRS_CONNECTED 

11 

int GSMRSSIlevel GSM/GPRS RSSI 
Signal Level 

0 

1 

2  

...  

(3 ~ 29) 

30 

31  

99 

-113 dbm or less 

-111 dbm 

-109 dbm 

...  

(+2 dbm per increment) 

-53 dbm 

-51 dbm or greater 

Not known or not detectable 

12 

int PINstatus GSM/GPRS PIN 
Code Status 

0 

1 

Disabled 

PIN code required 

13 

int Reserved[9] Reserved Null --- --- 
 
 



236 

 

CipherLab C Programming Guide 

 

2.20.3 SECURITY 

PIN (Personal Identity Number) is a 4-8 digit access code which can be used to secure 
your SIM card from use. If the wrong PIN is entered in more than three times, the SIM 
card will be locked. PUK (Personal Unblocking Key) is an 8-digit code used to unlock the 
PIN code if your SIM card is blocked. Contact your service provider for PUK. If the wrong 
PUK is entered ten times in a row, the device will become permanently blocked and 
unrecoverable, requiring a new SIM card. 

2.20.4 PIN PROCEDURE 

 

 

 
 

http://en.wikipedia.org/wiki/SIM_card
http://en.wikipedia.org/wiki/SIM_card


  237 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.20.5 PUK PROCEDURE 

 

 



238 

 

CipherLab C Programming Guide 

 

2.20.6 GSM PROGRAMMING FLOW 

 

 

 



  239 

 

 Chapter 2  Mobile-Specific Function Library 

 

GSMChangePINCode 8580, 8590 

Purpose To change the PIN code of your SIM card. 

Syntax int GSMChangePINCode (const char *old, const char *new); 

Example reval = GSMChangePINCode(PIN1, PIN2);       

                                       // change PIN code from PIN1 to PIN2 

Return Value Return Value  

1 PINCODE_PASSED The new PIN code has been accepted. 

0 INVALID_PINCODE The old PIN code is incorrect. 

-1 MODULE_RUNNING The GSM/GPRS module is running.  

-2 HARDWARE_ERR Hardware error occurs. 

-3 CONNECT_TIMEOUT The request times out. 
 

Remarks  This routine cannot be executed while the GSM/GPRS module is running.  

 The old PIN string must be the original or the current PIN code. In this 
case, the new PIN code can be adopted and the remaining attempt counter 
of PIN will be reset to 3.  

 If the old PIN code is wrong, not only it cannot be changed successfully, 
but also the counter will be decremented by 1. 

See Also GSMCheckPINCode, GSMSetPINCodeLock 
 

GSMCheckPINCode 8580, 8590 

Purpose To verify the input PIN code. 

Syntax int GSMCheckPINCode (const char *pincode); 

Example reval = GSMCheckPINCode(PINarray);      // check if PIN code is correct

Return Value Return Value  

2 PINCODE_UNNECESSARY No PIN code is required. 

1 PINCODE_PASSED The new PIN code has been accepted. 

0 INVALID_PINCODE The old PIN code is incorrect. 

-1 MODULE_RUNNING The GSM/GPRS module is running.  

-2 HARDWARE_ERR Hardware error occurs. 

-6 PUK_REQUIRED The PUK procedure is required. 
 

Remarks  This routine cannot be executed while the GSM/GPRS module is running.  

 If the input code is the correct PIN code, the remaining attempt counter of 
PIN is reset to 3. 

 If the old PIN code is wrong, the counter will be decremented by 1. 

See Also GSMChangePINCode, GSMSetPINCodeLock 

 
 
 



240 

 

CipherLab C Programming Guide 

 

GSMSetPINCodeLock 8580, 8590 

Purpose To decide whether to lock the SIM card or not. 

Syntax int GSMSetPINCodeLock (const char *pincode, int mode); 

Parameters const char *pincode 

The current PIN code of your SIM card. 

int mode  

0  Unlock the SIM card 

1  Lock the SIM card 
 

Example reval = GSMSetPINCodeLock(codeA, 1);  

                           // lock the SIM card, using PIN code “codeA” 

Return Value Return Value  

1 PINCODE_PASSED The new PIN code has been accepted. 

0 INVALID_PINCODE The old PIN code is incorrect. 

-1 MODULE_RUNNING The GSM/GPRS module is running.  

-2 HARDWARE_ERR Hardware error occurs. 

-3 PINALREADY_LOCKED The PIN code has already been locked. 

-4 PINALREADY_UNLOCKED The PIN code has already been unlocked. 

-5 CONNECT_TIMEOUT The request times out. 
 

Remarks  This routine cannot be executed while the GSM/GPRS module is running.  

 For a locking or unlocking process, the correct PIN code is required. 
Otherwise, it will fail and the remaining attempt counter will be 
decremented by 1.  

See Also GSMChangePINCode, GSMCheckPINCode 
 

 

 

 

 



  241 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.20.7 GSM SIGNAL QUALITY (RSSI) 

GSMModemGetRSSI 8580, 8590 

Purpose To get the RSSI value while in a GSM_Modem connection. 

Syntax int GSMModemGetRSSI (void); 

Example reval = GSMModemGetRSSI();  

Return Value Return Value  

0 ~  RSSI value 

-1  GSM Modem is not connected. 

-2  Data connection cannot be suspended. 

-3  Cannot resume data connection. 
 

Remarks  This function is used to get the RSSI value during a GSM data connection. 
The online data connection will be suspended for a few seconds in order to 
get the RSSI value. Therefore, data communications are disabled during 
this period of time.  

 The returned RSSI value will be automatically copied to the member 
GSMRSSIlevel in the GSMSTATUS structure, which can be obtained via 
CheckNetStatus(GSM_RSSIQuality).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 



242 

 

CipherLab C Programming Guide 

 

2.21 ACOUSTIC COUPLER 

Acoustic coupler is used for transmitting serial data stream from the mobile computer to 
a host computer via COM2. Refer to Appendix VII — Examples. 

The system does not allocate any transmit buffer. It simply records the pointer of the 
string to be sent. The transmission stops when a null character (0x00) is encountered. 
The application program must allocate its own transmit buffer and not to modify it during 
transmission. Below is the tone pattern in use. 

       

Modem parameter 
Modem Mode: V23mode or Bell202 mode 

Data Bits: 7 or 8 

Parity: Even, Odd, or None 

Stop Bit: 1 
Character Delay: 0~127 

DTMF arameters 
Modem Mode: DTMF mode 

Character Delay 0~15 

Character Gap 0~15 

2.21.1 MODEM MODE 

Two types of Modem mode, V23 and Bell 202, are supported in the acoustic coupler 
library. In the Modem mode, the content of string is the data sent to the remote 
computer. 

 In the V23 mode, the mark frequency is 2.1 kHz and the space frequency is 1.3 kHz. 

 In the Bell 202 mode, the mark frequency is 2.2 kHz and the space frequency is 1.2 
kHz. 

 
 



  243 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.21.2 DTMF MODE 

DTMF (dual-tone multi-frequency) mode is supported to dial out to a remote computer 
through the DTMF voice generated by the mobile computer. In the DTMF mode, the 
content of string should be phone number. 

 

 
 
 
 



244 

 

CipherLab C Programming Guide 

 

open_com   

Purpose To enable a specific COM port and initialize communications. 

Syntax int open_com (int com_port, int setting); 

Parameters int com_port 

COM2 is used for Acoustic Coupler on 8000/8300. Refer to the COM Port 
Mapping table. 

int setting  

Modem mode 

0x0000 

0x8000 

STOP_BIT1 

STOP_BIT2 

Stop bit  

0x00-- 

0x01-- 

…… 

0x7F-- 

Character Delay One character delay is approx. 10 
ms. 

The range of character delay is 0 
to 127. 

0x00 

0x40 

0x80 

BELL202MODE  

V23MODE 

DTMFMODE 

Modem mode type 

0x00 

0x10 

0x30 

PARITY_NONE 

PARITY_ODD 

PARITY_EVEN 

Parity 

0x00 

0x08 

DATA_BIT7 

DATA_BIT8 

Data bits 

0x00 

0x01 

0x02 

0x03 

AC_VOL0 

AC_VOL1 

AC_VOL2 

AC_VOL3 

Acoustic coupler's volume 

DTMF mode (old module doesn’t support) 

0x0--- 

0x1--- 

…… 

0xF--- 

Character Gap One character gap is approx. 25 
ms. 

The range of character gap is 0 to 
15. 

0x-0-- 

0x-1-- 

…… 

0x-F-- 

Character Delay One character delay is approx. 25 
ms. 

 
The range of character delay is 0 
to 15. 

0x80 DTMFMODE DTMF mode type 
 

 



  245 

 

 Chapter 2  Mobile-Specific Function Library 

 

 0x00 

0x01 

0x02 

0x03 

AC_VOL0 

AC_VOL1 

AC_VOL2 

AC_VOL3 

Acoustic coupler's volume 

 
Example open_com(2, 0x000b); 

// open COM 2 to V23, AC_VOL3, 8 data bits, 1 stop bit, no parity and 
no character delay 

open_com(2, 0x8280);  

// open COM 2 to DTMF mode, AC_VOL0, 8 character delay, and 2 character 
gap. 

Return Value If successful, it returns 1. (old Acoustic module) 

If successful, it returns 2. (new Acoustic module) 

Otherwise, it returns 0 to indicate the port number is invalid. 

Remarks This routine initializes the specific COM port, clears its receive buffer, stops any 
ongoing data transmission, resets COM port status, and configures the COM 
port according to the settings. 

See Also close_com, SetACTone, SetCommType 
 

SetACTone  8020, 8021, 8320 

Purpose To set the dial tone pattern of the acoustic coupler. 

Syntax void SetACTone (int startspace, int startmark, int endmark); 

Parameters The acoustic coupler is used for transmitting serial data stream in a tone 
pattern that starts at a space (startspace) followed by a mark (startmark), and 
then the data, and finally ends with another mark (endmark). 

Those parameter has default value – 

 startspace : 1000 

 startmark : 600 

 endmark : 600 

Example SetACTone(1000, 600, 600); 

Return Value None 

Remarks This routine sets the dial tone pattern of the acoustic coupler.  

Note that each parameter is provided in units of 5 milli-seconds. 

See Also open_com, SetCommType 
 

nwrite_com   

Purpose To send a number of characters through a specific COM port. 

Syntax int nwrite_com (int port, char *s, int count); 

Parameters int port  

COM2 is used for Acoustic Coupler. Refer to the COM Port Mapping table. 
char *s 

Modem mode – pointer to the string being sent out. 
 

 



246 

 

CipherLab C Programming Guide 

 

 DTMF mode (old module doesn’t support) – pointer to the phone number 
being dialed out. 

Number to be dialed Low Frequency (Hz) High Frequency (Hz) 

‘1’ 697 1209 

‘2’ 697 1336 

‘3’ 697 1477 

‘4’ 770 1209 

‘5’ 770 1336 

‘6’ 770 1477 

‘7’ 852 1209 

‘8’ 852 1336 

‘9’ 852 1477 

‘0’ 941 1336 

‘*’ 941 1209 

‘#’ 941 1477 

‘A’ 697 1633 

‘B’ 770 1633 

‘C’ 852 1633 

‘D’ 941 1633  
int count 

The number of characters to be sent. 
 

Example char s[]={“Hello\n”}; 

nwrite_com(2, s, 2);               // send the string “He” through COM2

char phone[]={“86471166”} 

write_com(2, phone, 2);            // send “86” through COM2 

Return Value If successful, it returns the character count.  

Otherwise, it returns 0. 

Remarks This routine sends the characters of a string one by one until the specified 
number of characters are sent out. 

See Also write_com 
 

write_com   

Purpose To send a null-terminated string through a specific COM port. 

Syntax int write_com (int port, char *s); 

Parameters int port 

COM2 is used for Acoustic Coupler. Refer to the COM Port Mapping table. 
char *s 

Modem mode – pointer to the string being sent out. 
 

 



  247 

 

 Chapter 2  Mobile-Specific Function Library 

 

 DTMF mode (old module doesn’t support) – pointer to the phone number 
being dialed out. Refer to the table for nwrite_com(). 
 

Example char s[]={“Hello\n”}; 

write_com(2, s);              // send the string “Hello\n” through COM2

char phone[]={“86471166”} 

write_com(2, phone);          // send the phone number through COM2 

Return Value If successful, it returns 1. 

Otherwise, it returns 0. 

Remarks This routine sends a string through a specific COM port. If any prior 
transmission is still in progress, it will be terminated and then the current 
transmission resumes. The characters of a string will be transmitted one by one 
until a NULL character is met.  

Note that a null string can be used to terminate the prior transmission. 

See Also nwrite_com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



248 

 

CipherLab C Programming Guide 

 

2.22 MODEM, ETHERNET & GPRS CONNECTION 

Below are available libraries that support (1) PPP connection over serial links, (2) 
Ethernet connection (Transparent mode), and (3) GPRS connection (Transparent mode). 
Refer to Appendix VII — Examples. 

Hardware Configuration External Libraries Required 

8000, 8001 – Batch 80PPP.lib 
8062 – Bluetooth 80PPP.lib OR 80BNEP.lib 

8000 Series 

 

8071 – 802.11b/g 80PPP.lib OR 80WLAN.lib 
8300 – Batch 83PPP.lib 

8330 – Bluetooth + 802.11b/g 83PPP.lib OR 83NetCombo.lib 

8362 – Bluetooth 83PPP.lib OR 83BNEP.lib 

8300 Series 

 

8370 – 802.11b/g   83PPP.lib OR 83WLAN.lib 

8400 – Bluetooth  84PPP.lib 8400 Series 

 8470 – Bluetooth + 802.11b/g 84PPP.lib OR 84WLAN.lib 

8500 Series 8500 – Bluetooth, 802.11b/g --- 

Note: GPRS (Transparent mode) is currently supported on 8400, with use of GPRS 
Cradle. Cradle firmware must be version 1.01 or later.    
 (1) 84PPP.lib should be version 1.03 or later.      
 (2) 8400WLAN.lib should be version 1.04 or later. 

 
 



  249 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.22.1 PPP VIA MODEM CRADLE/RS-232 

PPP, short for Point-to-Point Protocol, is a method of connecting the mobile computer to 
the Internet over serial links. It sends TCP/IP packets to a server that connects to the 
Internet.  

PPP Connection via Modem Cradle 

It is supported when making use of the proprietary modem cradle. For baud rate setting, any 
value other than 57600 bps (default) must be configured through the DIP switch of the IR control 
board. 
 

Note: For 8000/8300 Series, the version of IR control board on the modem cradle must 
be greater than SV3.01. 

 

PPP Connection via RS-232 

It is supported on 8300/8400 only when being connected to a generic modem (direct RS-232). 

2.22.2 PPPCONFIG STRUCTURE 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

typedef struct { 

    unsigned char DialUpPhone[20]; 

    unsigned char LoginName[41]; 

    unsigned char LoginPassword[20]; 

    int ComBaudRate; 

    unsigned char ReservedByte[17]; 

} PPPCONFIG; 

Parameter Default Description Index 

unsigned char 
DialUpPhone[20] 

Null Phone number of ISP 70 

unsigned char 
LoginName[41] 

Null Login user name of ISP 71 

unsigned char 
LoginPassword[20] 

Null Login password of ISP 72 

int ComBaudRate 0x00 Baud rate matching modem cradle or modem 
(cf. open_com) 

73 

unsigned char 
ReservedByte[17] 

Null Reserved --- 

 
 



250 

 

CipherLab C Programming Guide 

 

Follow the same programming flow of WLAN Example (802.11b/g). Before calling 
NetInit(4L) or NetInit(5L), the following parameters of PPP must be specified. 

Index Default Description 

70 P_PPP_DIALUPPHONE [20] Null Phone number of ISP 

71 P_PPP_LOGINNAME [41] Null Login user name of ISP 

72 P_PPP_LOGINPASSWORD [20] Null Login password of ISP 

73 P_PPP_BAUDRATE 0x00 Baud rate matching modem cradle or modem 
 

Note: For the baud rate values of IR or RS-232, see the baud rate setting in open_com. 
 
 

2.22.3 ETHERNET VIA CRADLE 

It is supported when making use of the proprietary Ethernet cradle. First, configure the 
Ethernet cradle to work in “Transparent” mode. Then, follow the same programming flow 
of WLAN Example (802.11b/g) using NetInit(6L).  

Refer to the Ethernet Cradle manual for more information on the working modes. 

2.22.4 GPRS VIA CRADLE & GSMCONFIG STRUCTURE 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

typedef struct { 

    unsigned char Reserved_1[51]; 

    unsigned char NET[21]; 

    unsigned char Reserved_2[21]; 

    GPRS_FLAG Flag; 

    char CHAPPassword[33]; 

    char CHAPUserName[33]; 

    char ReservedByte[95]; 

} GSMCONFIG; 

Parameter Default Description Index 

unsigned char  

Reserved_1[51] 

Null Reserved --- 

unsigned char NET[21] Null Name of GSM network operator 63 

unsigned char        

Reserved_2[21] 

Null Reserved --- 

GPRS_FLAG Flag --- See GPRS_FLAG Structure 65 
 



  251 

 

 Chapter 2  Mobile-Specific Function Library 

 

char CHAPPassword[33] Null Password for Challenge Handshake 
Authentication Protocol (CHAP) 

66 

char CHAPUserName[33] Null User name for Challenge Handshake 
Authentication Protocol (CHAP) 

67 

char ReservedByte[95] Null Reserved --- 
 

 

GPRS_FLAG STRUCTURE 

typedef struct { 

    unsigned int CHAPEnable: 0; 

    unsigned int Reservedflag: 15; 

} GPRS_FLAG; 

Parameter Bit Default Description Index 

unsigned int CHAPEnable 15 0 Challenge Handshake Authentication 
Protocol 

0: disable 

1: enable 

65 

unsigned int Reservedflag 0-14 Null Reserved --- 

 

It is supported when making use of 8400 GPRS Cradle. Use AT commands to configure 
PIN code and GPRS AP name. Then, follow the same programming flow of WLAN Example 
(802.11b/g) using NetInit(7L). It fails to initialize a connection in the following 
conditions: (1) PIN code and GPRS AP name are not configured correctly via AT 
commands, and (2) CHAP settings are not configured correctly on 8400. 

Refer to the 8400 GPRS Cradle manual for more information on the working modes. 

 

 

 

 

 

 

 

 

 
 



252 

 

CipherLab C Programming Guide 

 

2.23 USB CONNECTION 

Different USB applications are provided for reading and/or writing data via a virtual COM 
port, namely, COM5. The communication types, COMM_USBHID, COMM_USBVCOM and 
COMM_USBDISK, should be assigned by calling SetCommType() before use.  

Refer to Appendix VII — Examples. 

USB HID 
For 8400 Series to work as an input device, such as a keyboard for a host computer. 

 

USB Virtual COM 
For 8400 Series, when USB Virtual COM is in use, it is set to use one Virtual COM port for all 
(USB_VCOM_FIXED) whenever connecting more than one 8400 to PC via USB. This setting requires 
you to connect one 8400 at a time, and will facilitate configuring a great amount of 8400 mobile 
computers via the same Virtual COM port (for administrators’ or factory use). If necessary, you can 
have it set to use variable Virtual COM port (USB_VCOM_BY_SN), which will vary by the serial 
number of each different 8400. 

 

USB Mass Storage Device 
When 8400 Series is equipped with SD card and connected to your computer via the USB cable, it 
can be treated as a removable disk as long as it is configured properly through programming or 
System Menu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  253 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.23.1 USBCONFIG STRUCTURE 

Use GetNetParameter() and SetNetParameter() to change the settings by index. 
Refer to Appendix V — Net Parameters by Index. 

 

struct USBCONFIG { 

USB_FLAG1 Flag1; 

unsigned char ReservedByte[126]; 

}; 
 

Parameter Default Description Index 

USB_FLAG1 Flag1 --- See USB_FLAG1 Structure 80 

unsigned char 
ReservedByte[126] 

Null Reserved --- 

 

 

USB_FLAG1 STRUCTURE 

typedef struct { 

unsigned int CommBySerial: 1; 

unsigned int Reservedflag: 15; 

} USB_FLAG1; 

Parameter Bit Default Description Index 

unsigned int CommBySerial 0 0 USB Virtual COM 

0: USB_VCOM_FIXED 

1: USB_VCOM_BY_SN (= Port No.  

change with serial number) 

80 

unsigned int Reservedflag 1-15 0 Reserved --- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



254 

 

CipherLab C Programming Guide 

 

2.24 SD CARD 

SD card can be accessed directly by using the provided functions in user application. Yet, 
when 8400 is equipped with SD card and connected to your computer via the USB cable, 
it can be treated as a removable disk (USB mass storage device) as long as it is 
configured properly through programming or via System Menu | SD Card Menu | Run 
As USB Disk. Refer to 2.23 USB Connection and 2.24.6 Mass Storage Device. 

For memory information, refer to 2.14.3 SD Card. 

Note: It is not allowed for 8400 to directly access SD card when COM5 is set to mass 
storage use (pass COMM_USBDISK to SetCommType). 

Direct Access to SD for DAT Files 
 Use the functions provided in 2.24.5 SD Card Manipulation to access DAT files on SD card, 
which can be under any directory. Filename must be given in full path while filename extension 
is ignored. 

Note: It can have maximum 32 files and 3 directories opened at the same time. It is 
suggested that you close a file or directory whenever it is no longer desired; 
otherwise, the file handles may be depleted. 

Direct Access to SD for DBF Files 
 Use the functions provided in 2.15.7 DBF Files and IDX Files to access DBF files on SD card, 
which can be under any directory. Filename must be given in full path; however, filename 
extension is not required. When creating DBF files, it will have “.DB0” as the filename 
extension for the DBF file itself and “.DB1” ~ “.DB8” for the IDX files. 

 Use the functions provided in 2.15.8 File Transfer via SD Card to copy a DBF file from SRAM to 
SD card, and vice versa. The source DBF file must be closed before copying. 

USB Mass Storage Device 
When mass storage is in use, (1) all opened files will be closed automatically and (2) if any of the 
functions in 2.24.5 SD Card Manipulation is called before close_com(5), the error code 
E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as mass storage device.  

2.24.1 FILE SYSTEM 

For 8400 Series, it supports FAT12/FAT16/FAT32 and allows formatting the card through 
programming or via System Menu | SD Card Menu | Access SD Card. Based on the 
capacity of the card, it will automatically decide the FAT format upon calling fformat(): 

Card Capacity FAT Format Sectors per Cluster 

≦ 32 MB FAT12 32 

≦ 1 GB FAT16 32 

≦ 2 GB FAT16 64 
 



  255 

 

 Chapter 2  Mobile-Specific Function Library 

 

≦ 8 GB FAT32 8 

> 8 GB FAT32 16 

2.24.2 DIRECTORY 

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree 
directory structure and allows creating sub-directories. Several directories are reserved 
for particular use. 

Reserved Directory Related Application or Function Remark 

\Program  Program Manager | Download 

 Program Manager | Activate 

 Kernel Menu | Load Program 

 Kernel Menu | Kernel Update 

 UPDATE_BASIC() 

Store programs to this folder so that you can 
download them to 8400: 

 C program — *.SHX 

 BASIC program — *.INI and *.SYN 

\BasicRun BASIC Runtime Store DAT and DBF files that are created and 
accessed in BASIC runtime to this folder. 

Their permanent filenames are as follows: 

DAT Filename 

DAT file #1 TXACT1.DAT 

DAT file #2 TXACT2.DAT 

DAT file #3 TXACT3.DAT 

DAT file #4 TXACT4.DAT 

DAT file #5 TXACT5.DAT 

DAT file #6 TXACT6.DAT 

DBF Filename 

Record file F1.DB0 

System Default 
Index 

F1.DB1 

Index file #1 F1.DB2 

Index file #2 F1.DB3 

DBF file #1 

Index file #3 F1.DB4 

Record file F2.DB0 

System Default 
Index 

F2.DB1 

Index file #1 F2.DB2 

Index file #2 F2.DB3 

DBF file #2 

Index file #3 F2.DB4  



256 

 

CipherLab C Programming Guide 

 

  Record file F3.DB0 

System Default 
Index 

F3.DB1 

Index file #1 F3.DB2 

Index file #2 F3.DB3 

DBF file #3 

Index file #3 F3.DB4 

Record file F4.DB0 

System Default 
Index 

F4.DB1 

Index file #1 F4.DB2 

Index file #2 F4.DB3 

DBF file #4 

Index file #3 F4.DB4 

Record file F5.DB0 

System Default 
Index 

F5.DB1 

Index file #1 F5.DB2 

Index file #2 F5.DB3 

DBF file #5 

Index file #3 F5.DB4  
\AG\DBF 

\AG\DAT 

\AG\EXPORT 

\AG\IMPORT 

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are 
created and/or accessed in Application 
Generator to this folder. 

When a file name is required as an argument passed to a function call, it must be given 
in full path as shown below. 

File Path File in Root Directory File in Sub-directory 

“A:\\...” “A:\\UserFile” “A:\\SubDir\\UserFile” 

“a:\\...” “a:\\UserFile” “a:\\SubDir\\UserFile” 

“A:/...” “A:/UserFile” “A:/SubDir/UserFile” 

“a:/...” “a:/UserFile” “a:/SubDir/UserFile” 

Note: (1) For DAT files, it does not matter whether filename extension is included or not. 
 (2) For DBF files, it does not require including filename extension. 

 



  257 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.24.3 FILE NAME 

A file name must follow 8.3 format (= short filenames) — at most 8 characters for 
filename, and at most three characters for filename extension. The following characters 
are unacceptable: “ * + , : ; < = > ? | [ ] 

 On 8400 Series, it can only display a filename of 1 ~ 8 characters (the null character 
not included), and filename extension will be displayed if provided. If a file name 
specified is longer than eight characters, it will be truncated to eight characters.  

 Long filenames, at most 255 characters, are allowed when using 8400 equipped with 
SD card as a mass storage device. For example, you may have a filename 
“123456789.txt” created from your computer. However, when the same file is directly 
accessed on 8400, the filename will be truncated to “123456~1.txt”. 

 If a file name is specified other in ASCII characters, in order for 8400 to display it 
correctly, you may need to download a matching font file to 8400 first. 

 The file name is not case-sensitive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



258 

 

CipherLab C Programming Guide 

 

2.24.4 FILEINFO STRUCTURE 

Use fgetinfo() and freaddir() to access the file or directory information. 

typedef struct { 

char fname[13]; 

unsigned char fattrib; 

unsigned int ftime; 

unsigned int fdate; 

unsigned long fsize; 

} FILEINFO; 

Member Description 

char fname[13] File name must follow 8.3 format. This field is split into two parts:     

(1) 8 characters for file name  

(2) 3 character s for file extension 

unsigned char fattrib File attributes: 

0x01 READ_ONLY 

0x02 HIDDEN 

0x04 SYSTEM 

0x08 VOLUME_ID 

0x10 DIRECTORY 

0x20 ARCHIVE 
 

unsigned int ftime Time of last write operation. This is a 16-bit field: 

Bits 0~4 Seconds (each increment for 2 seconds) 

 Valid range 0~29 for 0~58 

Bits 5~10 Minutes 

 Valid range 0~59 

Bits 11~15 Hours 

 Valid range 0~23  
unsigned int fdate Date of last write operation. This is a 16-bit field: 

Bits 0~4 Day of month 

 Valid range 1~31 

Bits 5~8 Month of year 

 Valid range 1~12 

Bits 9~15 Year count since 1980 

 Valid range 0~127 for 1980~2107  
unsigned long fsize File size in bytes. 

 
 



  259 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.24.5 SD CARD MANIPULATION 

chmod  8400 

Purpose To change the attributes of a file or directory, by the given file path. 

Syntax int chmod (const char *filename, int attribute); 

Parameters const char *filename 

Pointer to a buffer where the filename of the file to be changed is stored.  

int attribute 

New attribute value given to the file. It can be one or more of the following: 

0x00 

0x01 

0x02 

0x04 

0x20 

FA_NOR 

FA_RDO 

FA_HID 

FA_SYS 

FA_ARC 

Normal file (= no attributes) 

Read-only file 

Hidden file (= does not affect accessibility) 

System file 

Archive bit (= this bit would be set if file is created or 
updated) 

 
Example int att; 

att = chmod(“A:\\myfile.bin”, FA_SYS|FA_RDO); 

if (result == EOF) 

    printf(“chmod error, A:\\myfile.bin\n”); 

Return Value If successful, it returns the new attributes. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine changes the attributes associated with the file specified by the 
argument filename. The filename must be given in full path and follow 8.3 
format. 

See Also chmodfp 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



260 

 

CipherLab C Programming Guide 

 

chmodfp  8400 

Purpose To change the attributes of the file by using the file handle. 

Syntax int chmodfp (int fd, int function, int attribute); 

Parameters int fd 

File handle of the target file. 
int function 

0 Return the current setting 
1 Set new attributes 

int attribute 

New attribute value given to the file. It can be one or more of the following: 

0x00 

0x01 

0x02 

0x04 

0x20 

FA_NOR 

FA_RDO 

FA_HID 

FA_SYS 

FA_ARC 

Normal file (= no attributes) 

Read-only file 

Hidden file (= does not affect accessibility) 

System file 

Archive bit (=this bit would be set if file is created or 
updated) 

 
Example int fd; 

int att; 

fd = fopen(“A:\\Subdir\\myfile.bin”,“r+”); 

att = chmodfp(fd, 1, FA_SYS|FA_RDO); 

if (att == EOF) 

    printf(“chmodfp error, A:\\Subdir\\myfile.bin\n”); 

Return Value If successful, it returns the new attributes. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine changes the attributes of a file. The new attributes will not take 
effect until the file is closed and re-opened. For example, if the file is currently 
open for writing, and then made read-only, writing to the file is still allowed 
until the file is closed and re-opened. 

See Also chmod 

 

 

 

 

 

 

 



  261 

 

 Chapter 2  Mobile-Specific Function Library 

 
 

fclose  8400 

Purpose To close a file opened earlier for buffered input and output using fopen().  

Syntax int fclose (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

fd = fopen(“A:\\SubDir\\UserFile”,“r+”); // file opened for read/write

// processing 

if (fclose(fd)!=NULL) 

    printf(“file close error”); 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks If the file has been opened for writing data, the contents of the buffer 
associated with the file are flushed before the file is closed. 

See Also fflush, fopen 
 

fclosedir  8400 

Purpose To close a directory. 

Syntax int fclosedir (int dir_handle); 

Parameters int dir_handle 

File handle of the target directory. 
 

Example int dir_handle; 

dir_handle = fopendir(“A:\\SubDir”); 

if (fclosedir(dir_handle) != NULL) 

    printf(“Fail to close a directory.”); 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

See Also fopendir 

 
 



262 

 

CipherLab C Programming Guide 

 

fcopy  8400 

Purpose To copy a file. 

Syntax int fclosedir (const char *srcfile, const char *dstfile); 

Parameters const char *srcfile 

Pointer to a buffer where the filename of the source file is stored. 

const char *dstfile 

Pointer to a buffer where the filename of the destination file is stored. 
 

Example fcopy (“A:\\SrcFile.txt”, “A:\\DstFile.txt”); 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine copies one file to another. If the destination file already exists, this 
routine returns with error. The filename must be given in full path and follow 
8.3 format. 

 

feof  8400 

Purpose To check whether or not the file pointer reaches the end-of-file (eof) position.  

Syntax int feof (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

int c; 

fd = fopen(“A:\\SubDir\\UserFile”,“r+”); // file opened for read/write

while (!feof(fd)) { 

    c = fgetc(fd); 

    } 

Return Value If EOF is reached, it returns a non-zero value. 

If EOF is not reached, it returns 0. 

See Also clearerr 
 



  263 

 

 Chapter 2  Mobile-Specific Function Library 

 

fflush  8400 

Purpose To flush the output buffer associated with a file opened for buffered I/O. This 
will cause any remaining data in the output buffer written to the file. 

Syntax int fflush (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

if (fflush(fd)) { 

    // file flush error 

    } 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

See Also fclose 
 

fformat  8400 

Purpose To create a file system on SD card. 

Syntax int fformat (void); 

Example if (fformat()!= NULL) 

    printf(Format failed!”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine creates a file system based on the size of the SD card. If the card 
size is smaller or equals to 2GB, it creates FAT file system; otherwise, it 
creates FAT32 file system 

See Also fopendir, freaddir 
 



264 

 

CipherLab C Programming Guide 

 

fgetc  8400 

Purpose To read one character from a file opened for buffered input. 

Syntax int fgetc (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

char string [81]; 

int i, c; 

if ((fd = fopen(“A:\\SubDir\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

c = fgetc(fd); 

for (i = 0; (i < 80) && (feof(fd) == 0) && (c != ’\n’); i++) 

    { 

    buffer [i] = c; 

    c = fgetc(fd); 

    } 

buffer [i] = ‘\0’; 

printf(“First line of UserFile: %s\n”, buffer); 

Return Value If successful, it returns the character read from the buffer. 

On error, it returns -1. 

 Call ferror() and feof() to determine if there was an error or the file simply 
reached its end. 

Remarks This routine reads a character from the current position of the file, and then 
increments this position. The character is returned as an integer. 

See Also fgets, fputc, fputs 
 



  265 

 

 Chapter 2  Mobile-Specific Function Library 

 

fgetinfo  8400 

Purpose To read file or directory information. 

Syntax int fgetinfo (const char *filename, FILEINFO *fileinfo); 

Parameters const char *filename 

Pointer to a buffer where the filename of the target file or directory is stored. 
The filename must be given in full path and follow 8.3 format.  

FILEINFO *fileinfo 

Pointer to FILEINFO structure, which is defined in 8400lib.h.  
 

Example FILEINFO fileinfo; 

if (fgetinfo(“A:\\userfile.txt”, &fileinfo) == 0) { 

    printf(“file size:%d, fileinfo.fsize); 

} 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

See Also fopen, fopendir 
 

fgetpos  8400 

Purpose To get and save the current read/write position of a file. 

Syntax int fgetpos (int fd, unsigned long *position); 

Parameters int fd 

File handle of the target file. 
unsigned long *position 

Pointer to a buffer where the current position of the file is returned. 
 

Example int fd; 

int c; 

unsigned long position; 

if ((fd = fopen(“A:\\SubDir\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

c = fgetc(fd); 

if (fgetpos(fd, &position) != 0) 

    printf(“fgetpos failed.”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine fills position with a value representing the current position of the 
file.  

See Also fsetpos 
 



266 

 

CipherLab C Programming Guide 

 

fgets  8400 

Purpose To read a line from a file opened for buffered input. This line is read until a 
newline (\n) character is encountered or until the number of characters reaches 
the specified maximum. 

Syntax char *fgets (char *string, int max_char, int fd); 

Parameters char *string 

Pointer to a buffer where the string is stored (by character). 

int max_char 

The maximum number of characters to be stored. 
int fd 

File handle of the target file. 
 

Example int fd; 

char string [81]; 

if ((fd = fopen(“A:\\SubDir\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

while (fgets(string, 80, fd) != NULL) 

printf(“%s\n”, string); 

Return Value If successful, it returns the pointer string. 

On error, it returns 0. 

 Call ferror() and feof() to determine if there was an error or the file simply 
reached its end. 

Remarks This routine reads at most one less than the number of characters specified by 
max_char from the file into the buffer pointed to by string. No additional 
characters are read after the newline character (which is retained). A null 
character is written immediately after the last character read into the buffer. 

See Also fgetc, fputc, fputs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  267 

 

 Chapter 2  Mobile-Specific Function Library 

 

fopen  8400 

Purpose To open or create a file for buffered input and output operations.  

Syntax int fopen (const char *filename, const char *mode); 

Parameters const char *filename 

Pointer to a buffer where the filename of the file to be opened is stored. The 
filename must be given in full path and follow 8.3 format.  

const char *mode 

Type of access permitted: 
“r” 

“w” 

“a” 

“rb” 

“wb” 

“ab” 

“r+” 

“w+” 

“a+” 

“r+b” 

“w+b” 

“a+b” 

Open for reading in text mode. 

Create or truncate for writing in text mode. 

Append in text mode. (open/create for writing at EOF) 

Open for reading in binary mode. 

Create or truncate for writing in binary mode. 

Append in binary mode. (open/create for writing at EOF) 

Open for reading and writing in text mode. 

Create or truncate for reading and writing in text mode. 

Open/create for reading and appending in text mode. 

Open for reading and writing in binary mode. 

Create or truncate for reading and writing in binary mode. 

Open/create for reading and appending in binary mode. 
 

Example int fd; 

if ((fd = fopen(“A:\\UserFile.txt”, “r+”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

Return Value If successful, it returns the file handle. 

On error, it returns 0. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine opens the file specified by the argument filename. The mode string 
specifies the type of access requested. If the operation succeeds, it returns a 
file handle of the file. 

 Up to 32 files can be opened at the same time. However, it is suggested 
that you close a file whenever it is no longer desired; otherwise, file 
handles may be depleted. (ferrno: E_NO_AVAILABLE_HANDLE) 

See Also fclose 

 
 
 
 
 
 



268 

 

CipherLab C Programming Guide 

 

fopendir  8400 

Purpose To open an existing directory. 

Syntax int fopendir (const char *dirname); 

Parameters const char *dirname 

Pointer to a buffer where the name of directory to be opened is stored.  
 

Example if (fopendir(“A:\\SubDir”) == 0) 

    printf(“Fail to open a directory.”); 

Return Value If successful, it returns the directory handle. 

On error, it returns 0. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine opens an existing directory specified by the argument dirname. 
The directory name must be given in full path and follow 8.3 format. 

 Up to 3 directories can be opened at the same time. However, it is 
suggested that you close a directory whenever it is no longer desired; 
otherwise, directory handles may be depleted. (ferrno: 
E_NO_AVAILABLE_HANDLE) 

See Also fclosedir, fformat, freaddir 
 

fputc  8400 

Purpose To write one character to a file opened for buffered output. 

Syntax int fputc (int c, int fd); 

Parameters int c 

The character to be written.  
int fd 

File handle of the target file. 
 

Example int fd; 

char buffer [81] = “Testing the function fputc”; 

int i; 

if ((fd = fopen(“A:\\UserFile”, “w”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

for (i = 0; (i < 80) && (fputc(buffer[i], fd) != EOF); i++); 

Return Value If successful, it returns the character written. 

On error, it returns -1. 

 Call ferror() to determine the error condition encountered. 

Remarks This routine writes a character given in the argument c to the file in the current 
position and then increments this position after writing the character. 

See Also fgetc, fgets, fputs 
 



  269 

 

 Chapter 2  Mobile-Specific Function Library 

 

fputs  8400 

Purpose To write a null-terminated string to a file opened for buffered output. 

Syntax int fputs (const char *string, int fd); 

Parameters const char *string 

Pointer to a buffer where the null-terminated string is stored. 
int fd 

File handle of the target file. 
 

Example int fd; 

char buffer [81] = “Testing the function fputs”; 

if ((fd = fopen(“A:\\UserFile”, “w”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

fputs(string, fd); 

Return Value If successful, it returns the number of characters written. 

On error, it returns -1. 

 Call ferror() to determine the error condition encountered. 

Remarks This routine writes a string given in the argument string to the file in the 
current position and then increments this position after writing the character. 

See Also fgetc, fgets, fputc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



270 

 

CipherLab C Programming Guide 

 

fread  8400 

Purpose To read a specified number of data items, each of a given size, from the 
current position in a file opened for buffered input. 

Syntax int fread (void *buffer, int size, int count, int fd); 

Parameters void *buffer 

Pointer to a buffer where data is stored. 

int size 

Size in bytes of each data item. 

int count 

The maximum number of items to be read. 
int fd 

File handle of the target file. 
 

Example int fd; 

char buffer [81]; 

int count; 

if ((fd = fopen(“A:\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

count = fread(buffer, 1, 80, fd); 

printf(“Read these %d characters:\n %s\n”, count, buffer); 

Return Value It returns the number of items actually read from the file. 

 If the number of items read is not equal to count, call ferror() and feof() to 
determine if there was an error or the file simply reached its end. 

Remarks The number of items returned will be equal to count unless EOF is reached or 
an error occurs. After the read operation is complete, the current position will 
be updated. 

See Also fwrite 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  271 

 

 Chapter 2  Mobile-Specific Function Library 

 

freaddir  8400 

Purpose To read directory entries in sequence.  

Syntax int freaddir (int dir_handle, FILEINFO *fileinfo) ; 

Parameters int dir_handle 

File handle of the target directory. 

FILEINFO *fileinfo 

Pointer to FILEINFO structure, which is defined in 8400lib.h. 
 

Example FILEINFO finfo; 

int dir_handle; 

if ((dir_handle = fopendir(“A:\\SubDir”)) == 0) 

    printf(“Fail to open a directory.”); 

if ((freaddir(dir_handle, &finfo) == NULL) &&finfo.fname[0]) { 

    printf(“File Name is %s”, finfo.fname); 

} 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered.  

Remarks This routine reads directory entries in sequence, and all items in the directory 
can be read by calling freaddir routine repeatedly. When all directory items 
have been read and no item to read, the routine returns a null string into 
fileinfo.fname without any error. 

See Also fformat, fopendir 
 

fremove  8400 

Purpose To delete a file. 

Syntax int fremove (const char *filename); 

Parameters const char *filename 

Pointer to a buffer where the filename of the file to be deleted is stored. The 
filename must be given in full path and follow 8.3 format.  

 
Example int ferrno; 

if (ferrno = fremove(“A:\\Subdir\\UserFile.txt”)) 

    printf(“ferrno = %d\n”, ferrno); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine deletes the file specified by the argument filename. The filename 
must include the subdirectory if there is any, such as “A:\\Dir\\File”. 

See Also frename, rmdir 
 



272 

 

CipherLab C Programming Guide 

 

frename  8400 

Purpose To rename (or move) an existing file or directory. 

Syntax int frename (const char *oldname, const char *newname); 

Parameters const char *oldname 

Pointer to a buffer where the old filename of the file is stored.  

const char *newname 

Pointer to a buffer where the new filename of the file is stored. 
 

Example int ferrno; 

if (ferrno = frename(“A:\\UserFile.txt”, “A:\\File2.txt”)) 

    printf(“ferrno = %d\n”, ferrno); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine changes the filename from oldname to newname. By changing the 
directory, it also allows moving the file to a different directory. The filename 
must be given in full path and follow 8.3 format. 

See Also fremove, mkdir, rmdir 
 

fscan  8400 

Purpose To update the information about free memory on SD card. 

Syntax int fscan (void); 

Example if (fscan() != 0){ 

printf(“fscan fail\r\n”); 

} 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks Some card has inaccurate information about free memory, resulting in failure 
to get the correct return value of ffreebyte(). This routine scans the card to 
update such information. The process might take some time to complete 
scanning and updating. 

 



  273 

 

 Chapter 2  Mobile-Specific Function Library 

 

fseek  8400 

Purpose To reposition the file pointer. 

Syntax int fseek (int fd, long offset, int origin); 

Parameters int fd 

File handle of the target file. 
long offset 

Offset of new position (in bytes) from origin. 

int origin 

File position from which to add offset: 

SEEK_SET (1) 

SEEK_CUR (0) 

SEEK_END (-1) 

Offset from the beginning of the file. 

Offset from the current position of the file pointer. 

Offset from the end of the file. 
 

Example int fd; 

if (fseek(fd, 30L, SEEK_SET) != 0) 

    printf(“fseek failed!\n”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine repositions the file_pointer by seeking a number of bytes (offset) 
from the given position (origin). If the file is opened in text mode, offset should 
be 0 or the value returned by ftell(). 

See Also ftell 
 
 



274 

 

CipherLab C Programming Guide 

 

fsetpos  8400 

Purpose To set the position where reading or writing can take place in a file opened for 
buffered I/O.  

Syntax int fsetpos (int fd, const unsigned long *newposition); 

Parameters int fd 

File handle of the target file. 
const unsigned long *newposition 

Pointer to a buffer where the new position of the file is stored. 
 

Example int fd; 

unsigned long curpos; 

char buffer [80]; 

if (fgetpos(fd, &curpos) != 0)           // save current position 

    printf(“fgetpos failed!”); 

if (fgets(buffer, 20, fd) == NULL)      // read 20 characters 

    printf(“fgets failed!”); 

if (fsetpos(fd, &curpos) != 0)              // reset to previous position

    printf(“fsetpos failed!”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine sets the file pointer of the opened file to a new position 
newposition. 

See Also fgetpos 
 

ftell  8400 

Purpose To get the current file pointer position.  

Syntax long ftell (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

long curpos; 

if ((curpos = ftell(fd)) == -1L) 

    printf(“ftell failed!”); 

Return Value If successful, it returns a long integer containing the number of bytes for the 
offset from the beginning of the file to the current position. 

On error, it returns -1L. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks This routine returns the current read/write position of the file. 

See Also fseek 
 



  275 

 

 Chapter 2  Mobile-Specific Function Library 

 

ftruncate  8400 

Purpose To truncate a file from the current file pointer. 

Syntax int ftruncate (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

fd = fopen(“A:\\UserFile.txt”, “wb”);  

fseek(fd, 10, SEEK_SET); 

ftruncate(fd);                         //truncate file size to 10 bytes

fclose(fd); 

Return Value If successful, it returns 0. 

On error, it returns -1. The global variable ferrno is set to indicate the error 
condition encountered. 

Remarks Use fseek() to position the file pointer where you want to truncate a file from. 

See Also fseek 
 

fwrite  8400 

Purpose To write a specified number of data items, each of a given size, from a buffer 
to the current position in a file opened for buffered output. 

Syntax int fwrite (const void *buffer, int size, int count, int fd); 

Parameters const void *buffer 

Pointer to a buffer where data is stored. 

int size 

Size in bytes of each data item. 

int count 

The maximum number of items to be written. 
int fd 

File handle of the target file. 
 

Example int fd; 

char buffer [81] = “Testing the fwrite function”; 

int count; 

if ((fd = fopen(“A:\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

count = fwrite(buffer, 1, 20, fd); 

printf(“%d characters written to a file”, count); 
 



276 

 

CipherLab C Programming Guide 

 

Return Value It returns the number of items actually written to the file. 

If the number of items written is not equal to count, call ferror() to determine if 
there was an error. 

Remarks The number of items returned will be equal to count unless an error occurs. 
After the write operation is complete, the current position will be updated. 

See Also fread 
 

mkdir  8400 

Purpose To create a new directory. 

Syntax int mkdir (const char *newdir); 

Parameters const char *newdir 

Pointer to a buffer where the name of directory to be created is stored.  
 

Example if (mkdir(“A:\\SubDir1\\SubDir2\\new_dir”) != 0) 

    printf(“Fail to create a directory.”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine creates a new directory specified by the argument newdir. The 
directory name must be given in full path and follow 8.3 format. 

See Also rmdir 
 

rmdir  8400 

Purpose To delete a directory. 

Syntax int rmdir (const char *dir); 

Parameters const char *dir 

Pointer to a buffer where the name of directory to be deleted is stored.  
 

Example if (rmdir(“A:\\SubDir1\\SubDir2”) != 0) 

    printf(“Fail to delete the directory.”); 

Return Value If successful, it returns 0. 

On error, it returns a non-zero value. The global variable ferrno is set to 
indicate the error condition encountered. 

Remarks This routine deletes the directory specified by the argument dir from the file 
system. The dir must include the subdirectory if there is any, such as 
“A:\\SubDir1\\SubDir2”. The directory must be empty; otherwise, an error is 
returned for it cannot be removed. An attempt to remove the root directory 
also returns an error. 

See Also fremove, mkdir 
 



  277 

 

 Chapter 2  Mobile-Specific Function Library 

 

2.24.6 MASS STORAGE DEVICE 

When mass storage is in use, (1) all opened files will be closed automatically and (2) if 
any of the functions in 2.24.5 SD Card Manipulation is called before close_com(5), the 
error code E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as 
mass storage device. 

 

GetMassStorageStatus 8400 

Purpose To get the status when mass storage is in use. 

Syntax int GetMassStorageStatus (void); 

Example int status; 

status = GetMassStorageStatus(); 

if (status&0x1){ 

printf(“USB is connected”); 

} 

else { 

printf(“USB is disconnected”); 

} 

Return Value An integer is returned, summing up values of each item, to indicate the current 
status. 

Remarks Each bit indicates a certain item as shown below. 

Bit Return Value 

0 0: USB is disconnected 

1: USB is connected 

1 0: Device is not being accessed 

1: Device is being accessed 
 

See Also SetCommType 

 

 

 

 

 

 

 

 



278 

 

CipherLab C Programming Guide 

 

2.24.7 ERROR CODE 

For most SD-related functions, the global variable ferrno is set to indicate the error 
condition encountered. For example, 

fd = fopen(“A:\\file1”, “rb”); 

if(!fd){ 

    printf(“%d”,ferrno); 

} 

For information on the condition encountered, refer to the Error Code list in ferror(). 
Alternatively, you may call ferror() to access the error code after performing read/write 
operation to a file. 

Using ferrno 

fwrite (X, X, X, fd1); 

error1 = ferrno 

fwrite (X, X, X, fd2); 

error2 = ferrno 

After executing an SD-related function, the global variable ferrno will be updated accordingly. 
Therefore, in the example above error1 and error2 may be different. 

Using ferror() 

fwrite (X, X, X, fd1); 

error1 = ferror (fd1); 

fwrite (X, X, X, fd2); 

error2 = ferror (fd2); 

error1 = ferror (fd1); 

After executing a function related to read/write operation to a file, the value you get by calling 
ferror() is the same as the one ferrno holds. The only difference is the value returned by 
ferror() will not be updated until executing a function related to read/write operation to the 
same file. Therefore, in the example above the first error1 and the second error1 are exactly the 
same. 

 

 

 

 

 

 

 



  279 

 

 Chapter 2  Mobile-Specific Function Library 

 

clearerr  8400 

Purpose To reset the error code of a file. 

Syntax void clearerr (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

char string [81]; 

if ((fd = fopen(“A:\\UserFile”, “r”)) == NULL) { 

    printf(“fopen failed.\n”); 

    while (1); 

    } 

fgets (string, 80, fd); 

if (ferror(fd) != 0) { 

    printf(“Error detected.\n”); 

    clearerr(fd); 

    printf(“Error cleared.\n”); 

    } 

Return Value None  

Remarks This routine sets the error code to zero. 
 



280 

 

CipherLab C Programming Guide 

 

ferror  8400 

Purpose To check whether or not an error has occurred during a previous read/write 
operation on a file. 

Syntax int ferror (int fd); 

Parameters int fd 

File handle of the target file. 
 

Example int fd; 

int c; 

fd = fopen (“A:\\UserFile”, “r+”);         // file opened for read/write

while (!feof(fd)) { 

    c = fgetc(fd); 

    if (ferror(fd)) { 

        printf(“Error detected.\n”); 

        clearerr(fd); 

        printf(“Error cleared.\n”); 

    } 

Return Value If any error occurred, it returns the error code. 

Otherwise, it returns 0. 

Error Code Meaning 

E_SD_NOT_READY(1) 

E_NO_FILESYSTEM(2) 

E_NO_OBJECT(3) 

E_NO_PATH(4) 

E_NOT_DIR(5) 

E_NOT_FILE(6) 

E_DIR_NOT_EMPTY(7) 

E_INVALID_NAME(8) 

E_INVALID_OBJECT(9) 

E_READ_ONLY(10) 

E_ACCESS_DENIED(11) 

E_OBJECT_EXIST(12) 

E_DISK_FULL(13) 

E_RW_ERROR(14) 

E_INVALID_HANDLE(15) 

E_NO_AVAILABLE_HANDLE(16) 

E_INVALID_MODE(17) 

E_SD_OCCUPIED(18) 

SD is not ready 

Unsupported File System 

Can't find object 

Can't find path 

Not a directory 

Not a file 

Directory is not empty 

Invalid Name 

Object is not properly opened 

Object's attribute is read-only 

Access doesn't match open method 

Object already exists 

Disk is full 

Sector read/write error 

Invalid Handle 

Unavailable Handle 

Invalid mode character 

SD is being used by USB Mass Storage 
 

Remarks You may call ferror() to access the error code for fgetc(), fgets(), fputc(), 
fputs(), fread() and fwrite(). 



  281 

 

 

The standard library routines supported are categorized and listed below. 

IN THIS CHAPTER 

3.1 Input & Output: <stdio.h> .........................................281 
3.2 Character Class Tests: <ctype.h> ...............................281 
3.3 String Functions: <string.h> ......................................282 
3.4 Mathematical Functions: <math.h>.............................283 
3.5 Utility Functions: <stdlib.h>.......................................284 
3.6 Diagnostics: <assert.h> ............................................285 
3.7 Variable Argument Lists: <stdarg.h>...........................285 
3.8 Non-Local Jumps: <setjmp.h> ...................................285 
3.9 Signals: <signal.h> ..................................................285 
3.10 Time & Date Functions: <time.h> .............................285 
3.11 Implementation-defined Limits: <limits.h>, <float.h>..285 
 
 

3.1 INPUT & OUTPUT: <STDIO.H> 

 File Operations: Not supported. Please use CipherLab Library routines. 

 Formatted Output: Only sprintf is supported. 

For formatted output to display, refer to CipherLab Library 
“LCD”. 

 Formatted Input: Only sscanf is supported. 

 Character Input and Output: Not supported. Refer to CipherLab Library “Keypad”. 

 Direct Input and Output: Not supported. 
 

3.2 CHARACTER CLASS TESTS: <CTYPE.H> 

For each function, the argument is a character, whose value must be EOF or 
representable as an unsigned char, and the return value is an integer.  

The functions return non-zero (true) if the argument c satisfies the condition described; 
otherwise, zero is returned. 

 isalnum (c) isalpha (c) or isdigit (c) is true 

 isalpha (c) isupper (c) or islower (c) is true 

 iscntrl (c) control character 

 isdigit (c) decimal digit 

 isgraph (c) printing character except space 

 islower (c) lower-case letter 
 

Chapter 3 
STANDARD LIBRARY ROUTINES 



282 

 

CipherLab C Programming Guide 

 

 isprint (c) printing character including space 

 ispunct (c) printing character except space, letter and digit 

 isspace (c) space, formfeed, newline, carriage return, tab, vertical tab 

 isupper (c) upper-case letter 

 isxdigit (c) hexadecimal digit 

In addition, there are two functions that convert the case of letters: 

 int tolower (c) convert c to lower-case 

 int toupper (c) convert c to upper-case 
 

3.3 STRING FUNCTIONS: <STRING.H> 

3.3.1 FUNCTIONS START WITH “STR” 

In this list, types of variables are as follows. 

char *s; 

const char *cs, ct; 

size_t n; 

int c; 

 char *strcpy (s, ct) copy string ct to string s, including 0x00, return s 

 char *strncpy (s, ct, n) copy at most n characters of string ct to s, return s, pad with 
0x00s if ct has fewer than n characters 

 char *strcat (s, ct) concatenate string ct to end of string s, return s 

 char *strncat (s, ct, n) concatenate at most n characters of ct to s, return s 

 int strcmp (cs, ct) compare string cs with ct, return valus < 0 if cs < ct; return = 0 if 
cs = ct; return > 0 if cs > ct 

 int strncmp (cs, ct, n) compare at most n characters of string cs with ct, return valus < 0 
if cs < ct; return = 0 if cs = ct; return > 0 if cs > ct 

 char *strchr (cs, c) return pointer to first occurrence of c in cs or NULL if not present 

 char *strrchr (cs, c) return pointer to last occurrence of c in cs or NULL if not present 

 size_t strspn (cs, ct) return length of prefix of cs consisting of characters in ct 

 size_t strcspn (cs, ct) return length of prefix of cs consisting of characters not in ct 

 char *strpbrk (cs, ct) return pointer to first occurrence in string cs of any character of 
string ct, or NULL if none is present 

 char *strstr (cs, ct) return pointer to first occurrence of string ct in cs, or NULL if not 
present 

 size_t strlen (cs) return length of string cs 

 char *strtok (s, ct) search s for tokens delimited by characters from ct 
 



  283 

 

 Chapter 3  Standard Library Routines 

 

 strcoll Not supported. 

 strerror Not supported. 
 

3.3.2 FUNCTIONS START WITH “MEM” 

In this list, types of variables are as follows. 

void *s; 

const void *cs, *ct; 

size_t n; 

int c;  

 void *memcpy (s, ct, n) copy n characters from ct to s, return s 

 void *memmove (s, ct, 
n) 

same as memcpy except that it works fine even if objects overlap 

 int memcmp (cs, ct, n) compare first n characters of cs with ct, return as strcmp 

 void *memchr (cs, c, n) return pointer to first occurrence of character c in cs or NULL if not 
present among first n characters 

 void *memset (s, c, n) place character c into first n characters of s, return s 
 

3.4 MATHEMATICAL FUNCTIONS: <MATH.H> 

Mathematical functions are listed below. All of them return a value of double. 

In this list, types of variables are as follows. 

double x, y; 

int n; 

 sin (x) sine of x  

 cos (x) cosine of x 

 tan (x) tangent of x  

 asin (x) arc sine of x, in the range [-π/2, π/2] radians, x ∈ [−1, 1]. 

 acos (x) arc cosine of x, in the range [0,π] radians, x ∈ [−1, 1]. 

 atan (x) arc tangent of x, in the range [-π/2, π/2] radians. 

 atan2 (y, x) arc tangent of y/x, in the range [-π, π] radians. 

 sinh (x) hyperbolic sine of x 

 cosh (x) hyperbolic cosine of x 

 tanh (x) hyperbolic tangent of x 

 exp (x) base e raised to the power of x 

 log (x) log(x), x > 0 

 log10 (x) log to the base 10 of x, x > 0 
 



284 

 

CipherLab C Programming Guide 

 

 pow (x, y) x raised to the power y 

 sqrt (x) square root of x 

 ceil (x) the smallest integer no less than x 

 floor (x) the largest integer not greater than x 

 fabs (x) absolute value of x 

 ldexp (x, n) x multiplied by 2 raised to the power of n 

 frexp (x, int *exp) decompose x into two parts: a mantissa between 0.5 and 1 
(returned by the function) and an exponent returned as exp.  

Scientific notation works like this: x = mantissa * (2 ^ exp) 

If x = 0, both parts of the result are zero. 

 modf (x, double *ip) split x into its integer and fraction parts, each with the same sign 
as x. Returns the fractional part and loads the integer part into *ip. 

 fmod (x, y) the remainder of x/y, with the same sign as x.  

If y = 0, the result is implementation-defined. 
 

3.5 UTILITY FUNCTIONS: <STDLIB.H> 

3.5.1 NUMBER CONVERSION 

 double atof (const char *s) Convert s to double, equivalent to strtod 
(s, (char **) NULL) 

 int atoi (const char *s) Convert s to integer, equivalent to strtol 
(s, (char **) NULL, 10) 

 long atol (const char *s) Convert s to long,  

equivalent to strtol (s, (char **) NULL, 10) 

 double strtod (const char *s, char **endp) Convert the prefix of s to double 

 long strtol (const char *s, char **endp, int base) Convert the prefix of s to long 

 unsigned long strtoul (const char *s, char 
**endp, int base) 

Convert the prefix of s to unsigned long 

 int rand (void) Return a random integer from 0 to 32,767 

 void strand (unsigned int seed) seed for new pseudo-random generation 

 void *bsearch() binary search 

 void qsort() ascending sorts 

 int abs (int n) integer absolute 

 long labs (long n) long absolute 

 div_t div (int num, int denom) integer division 

 ldiv_t div (long num, long denom) long division 
 

3.5.2 STORAGE ALLOCATION 

Not supported. Use the CipherLab library routines instead. 
 



  285 

 

 Chapter 3  Standard Library Routines 

 

3.6 DIAGNOSTICS: <ASSERT.H> 

Not supported. 
 

3.7 VARIABLE ARGUMENT LISTS: <STDARG.H> 

Functions for processing variable arguments are listed below. 

va_start (va_list ap, lastarg) 

type va_arg (va_list ap, type) 

void va_end (va_list ap) 
 

3.8 NON-LOCAL JUMPS: <SETJMP.H> 

Not supported. 
 

3.9 SIGNALS: <SIGNAL.H> 

Not supported. 
 

3.10 TIME & DATE FUNCTIONS: <TIME.H> 

Not supported. 
 

3.11 IMPLEMENTATION-DEFINED LIMITS: <LIMITS.H>, <FLOAT.H> 

Refer to limit.h and float.h. 
 

 

 



286 

 

CipherLab C Programming Guide 

 



  287 

 

 

All the mobile computers come with a real-time kernel (µC/OS) that allows user to 
generate a preemptive multi-tasking application. User can apply the real-time kernel 
functions to split the application into multiple tasks that each task takes turns to gain the 
access to the system resource by a priority-based schedule. 

µC/OS applies the semaphore mechanism to control the access to the shared resource 
for the multiple tasks. Generally, there are only three operations that can be performed 
on a semaphore: CREATE, PEND, and POST. A semaphore is a key that the task has to 
require so that it can continue execution. If a semaphore is already in use, the requesting 
task is suspended until the semaphore is released by its current owner. 

A task is an infinite loop function or a function which deletes itself when it is done 
executing. Each task is assigned with an appropriate priority. The more important the 
task is, the higher the priority given to it. µC/OS can manage up to 32 tasks (with 
priority set from 0 to 31, the lower number, the higher priority) for the user program. 
The main task, main(), takes priority 16. 

A task desiring the semaphore will perform a PEND operation. A task releases the 
semaphore by performing a POST operation. If there are several tasks on the pending 
list, the task with highest priority waiting for the semaphore will receive the semaphore 
when the semaphore is posted. The pending list of tasks is always initially empty. 

Semaphores are often overused. Disabling and enabling interrupts could do the job more 
efficiently. All real-time kernels will disable interrupts during critical sections of code. You 
are thus basically allowed to disable interrupts for as much time as the kernel does 
without affecting interrupt latency.  

The µC/OS related functions are discussed as follows. 

OS_ENTER_CRITICAL  

Purpose To disable the processor's interrupt. 

Syntax void OS_ENTER_CRITICAL (void); 

Example OS_ENTER_CRITICAL();   

/* user code */ 

OS_EXIT_CRITICAL(); 

Return Value None 

Remarks A critical section of code is code that needs to be treated indivisibly. Once the 
section of code starts executing, it must not be interrupted. To ensure this, 
user can call this routine to disable interrupts prior to executing the critical 
code, and then enable the interrupts when the critical code is done. This 
function executes in about 5 CPU clock cycles.  

 OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs. 

 
 

Chapter 4 
REAL-TIME KERNEL 



288 

 

CipherLab C Programming Guide 

 

OS_EXIT_CRITICAL  

Purpose To enable the processor's interrupt. 

Syntax void OS_EXIT_CRITICAL (void); 

Example OS_ENTER_CRITICAL();   

/* user code */ 

OS_EXIT_CRITICAL(); 

Return Value None 

Remarks This function executes in about 5 CPU clock cycles. 

 OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs. 
 

OSSemCreate   

Purpose To create and initialize a semaphore. 

Syntax OS_EVENT *OSSemCreate (unsigned value); 

Parameters OS_EVENT, a data structure to maintain the state of an event called an Event 
Control Block (ECB), is defined as below. 

typedef struct os_event { 

unsigned char OSEventGrp;     

                     // Group corresponding to tasks waiting for event to occur  

unsigned char OSEventTbl[8];   

                     // List of tasks waiting for event to occur 

long OSEventCnt;                 

                     // Count of used when event is a semaphore 

void *OSEventPtr;          

                     // Pointer to message or queue structure 

} OS_EVENT; 

unsigned value 

The initial value of the semaphore, which is allowed to be between 0 and 
32767. 

 
Example DispSem = OSSemCreate(1);                  // create Display semaphore

Return Value A pointer to the event control block allocated to the semaphore.  

If no event control blocks are available, a NULL pointer will be returned. 

Remarks This function creates and initializes a semaphore. A semaphore is used to: 

 Allow a task to synchronize with either an ISR or a task. 

 Gain exclusive access to a resource. 

 Signal the occurrence of an event. 

Note that semaphores must be created before they are used. This function 
cannot be called from an ISR. 

 
 



  289 

 

 Chapter 4  Real-Time Kernel 

 

OSSemPend   

Purpose To list a task on the pending list for the semaphore. 

Syntax void OSSemPend (OS_Event *pevent, unsigned long timeout, unsigned 
char *err); 

Parameters OS_Event *pevent 

Pointer to the semaphore. This pointer is returned to your application when 
the semaphore is created. 

unsigned long timeout 

The maximum timeout can be 65535 clock ticks. It is used to allow the task to 
resume execution if the semaphore is not acquired within the specified 
number of clock ticks.  

 A timeout value of 0 indicates that the task desires to wait forever for the 
semaphore.  

unsigned char *err 

Pointer to a variable which will be sued to hold an error code. 

OSSemPend sets *err to either: 

 OS_NO_ERR, if the semaphore is available. 

 OS_TIMEOUT, if a timeout occurred.  
Example OSSemPend(DispSem, 0, &err); 

Return Value None 

Remarks This function is used when a task desires to gain exclusive access to a 
resource, to synchronize its activities with an Interrupt Service Routine (ISR), 
or to wait until an event occurs.  

If a task calls OSSemPend() and the value of the semaphore is greater than 
zero, then OSSemPend() will decrement the semaphore count and return to its 
caller. However, if the value of the semaphore is less than or equal to zero, 
OSSemPend() decrements the semaphore count and places the calling task in 
the pending list for the semaphore. The task will thus wait until a task or an 
ISR releases the semaphore or signals the occurrence of the event. In this 
case, rescheduling occurs and the next highest priority task ready to run is 
given control of the CPU. An optional timeout may be specified when pending 
for a semaphore. 

Note that semaphores must be created before they are used. This function 
cannot be called from an ISR. 

 

 
 
 



290 

 

CipherLab C Programming Guide 

 

OSSemPost   

Purpose To signal the semaphore. 

Syntax unsigned char OSSemPost (OS_Event *pevent); 

Parameters OS_Event *pevent 

Pointer to the semaphore. This pointer is returned to your application when 
the semaphore is created. 

 
Example err = OSSemPost(DispSem); 

 

Return Value If successful, it returns OS_NO_ERR. (= The semaphore is available.) 

Otherwise, it returns OS_TIMEOUT. (= Timeout occurred.) 

Remarks A semaphore is signaled by calling OSSemPost(). If the value of a semaphore 
is greater than or equal to zero, the semaphore count is incremented and 
OSSemPost() returns to its caller. 

If the semaphore count is less than zero, then tasks are waiting for the 
semaphore to be signaled. In this case, OSSemPost() removes the highest 
priority task pending for the semaphore from the pending list and makes this 
task ready to run. The scheduler is then called to determine if the awakened 
task is now the highest priority task ready to run. 

Note that semaphores must be created before they are used. 
 



  291 

 

 Chapter 4  Real-Time Kernel 

 

OSTaskCreate   

Purpose To create a task. 

Syntax unsigned char OSTaskCreate (void (*task)(void *pd), void *pdata, 
unsigned char *pstk, unsigned long stk_size, unsigned char prio); 

Parameters void (*task) 

Pointer to the task's code. 

void *pdata 

Pointer to an optional data area, which can be used to pass parameters to the 
task when it is created. 

unsigned char *pstk 

Pointer to the task's top of stack. The stack is used to store local variables, 
function parameters, return addresses, and CPU registers during an interrupt.  

 The size of this stack is defined by the task requirements and the 
anticipated interrupt nesting. Determining the size of the stack involves 
knowing how many bytes are required for storage of local variables for 
the task itself, all nested functions, as well as requirements for interrupts 
(accounting for nesting). 

unsigned char prio 

The task priority. A unique priority number must be assigned to each task; 
the lower the number, the higher the priority. 

 
Example static unsigned char beep_stk[256]; 

OSTaskCreate(beep_task, (void *)0, beep_stk, 256, 10);          

                                // create a beep_task with priority 10 

Return Value If successful, it returns OS_NO_ERR. 

If the requested priority already exists, it returns OS_PRIO_EXIST. 

Remarks This function allows an application to create a task. The task is managed by 
µ/OS. Tasks can be created prior to the start of multitasking or by a running 
task.  

Note that a task cannot be created by an ISR. 
 
 



292 

 

CipherLab C Programming Guide 

 

OSTaskDel   

Purpose To delete a task. 

Syntax unsigned char OSTaskDel (unsigned char prio); 

Parameters unsigned char prio 

The task priority. A unique priority number must be assigned to each task; 
the lower the number, the higher the priority. 

 
Example err = OSTaskDel(10);                   // delete a task with priority 10

Return Value If successful, it returns OS_NO_ERR. 

If the task to be deleted does not exist, it returns OS_TASK_DEL_ERR. 

If the task to be deleted is an idle task, it returns OS_TASK_DEL_IDLE. 

Remarks This function allows user application to delete a task by specifying the priority 
number of the task. The calling task can be deleted by specifying its own 
priority number. The deleted task is returned to the dormant state. The deleted 
task may be created to make the deleted task active again.  

Note that an ISR cannot delete a task. This function will verify that you are not 
attempting to delete the µ/OS's idle task. 

 

OSTimeDly   

Purpose To allow a task to delay itself for a number of clock ticks. 

Syntax void OSTimeDly (unsigned long ticks); 

Parameters unsigned long ticks 

The number of clock ticks to delay the current task -  

 Valid delays range from 1 to 65535 ticks.  

 Calling this function with a delay of 0 results in delay infinitely. 

For 8000/8300 Series, the delay time in units of 1/200 second (= 5 
milliseconds).  

For 8500 Series, the delay time in units of 1/256 second. 
 

Example OSTimeDly(10);                    // delay task for 50 ms on 8000/8300 

Return Value None 

Remarks This function allows a task to delay itself for a number of clock ticks. 
Rescheduling always occurs when the number of clock ticks is greater than 
zero.  

Note that this function cannot be called from an ISR. 
 

 

 

 



  293 

 

 

IN THIS CHAPTER 

Symbology Parameter Table I ..........................................293 
Symbology Parameter Table II .........................................300 
 
 

SYMBOLOGY PARAMETER TABLE I 

Byte Bit Description Default Scan Engine 

0 7 1: Enable Code 39 

0: Disable Code 39 

1 CCD, Laser 

 6 1: Enable Italian Pharmacode 

0: Disable Italian Pharmacode 

0 CCD, Laser 

 5 1: Enable CIP 39 (French Pharmacode) 

0: Disable CIP 39 

0 CCD, Laser 

 4 1: Enable Industrial 25 

0: Disable Industrial 25 

1 CCD, Laser 

 3 1: Enable Interleaved 25 

0: Disable Interleaved 25 

1 CCD, Laser 

 2 1: Enable Matrix 25 

0: Disable Matrix 25 

0 CCD, Laser 

 1 1: Enable Codabar (NW7) 

0: Disable Codabar (NW7) 

1 CCD, Laser 

 0 1: Enable Code 93 

0: Disable Code 93 

1 CCD, Laser 

 

1 7 1: Enable Code 128 & EAN-128 

0: Disable Code 128 & EAN-128 

1 CCD, Laser 

 6 1: Enable UPC-E 

0: Disable UPC-E 

1 CCD, Laser 

 5 1: Enable UPC-E Addon 2 

0: Disable UPC-E Addon 2 

0 CCD, Laser 

 4 1: Enable UPC-E Addon 5 

0: Disable UPC-E Addon 5 

0 CCD, Laser 

 

Appendix I 
SCANNERDESTBL ARRAY 



294 

 

CipherLab C Programming Guide 

 

 3 1: Enable EAN-8 

0: Disable EAN-8 

1 CCD, Laser 

 2 1: Enable EAN-8 Addon 2 

0: Disable EAN-8 Addon 2 

0 CCD, Laser 

 1 1: Enable EAN-8 Addon 5 

0: Disable EAN-8 Addon 5 

0 CCD, Laser 

 0 1: Enable EAN-13 & UPC-A 

0: Disable EAN-13 & UPC-A 

1 CCD, Laser 

 

2 7 1: Enable EAN-13 & UPC-A Addon 2 

0: Disable EAN-13 & UPC-A Addon 2 

0 CCD, Laser 

 6 1: Enable EAN-13 & UPC-A Addon 5 

0: Disable EAN-13 & UPC-A Addon 5 

0 CCD, Laser 

 5 1: Enable MSI 

0: Disable MSI 

0 CCD, Laser 

 4 1: Enable Plessey 

0: Disable Plessey 

0 CCD, Laser 

 3 1: Enable Coop 25 

0: Disable Coop 25 

0 CCD, Laser 

Note: Currently, the support of Coop 25 is implemented on 8000, 8300 and 8400. 

 2 1: Enable Telepen 

0: Disable Telepen 

0 CCD, Laser 

 1 1: Enable original Telepen (= Numeric mode) 

0: Disable original Telepen (= ASCII mode) 

0 CCD, Laser 

 0 1: Enable RSS Limited 

0: Disable RSS Limited 

0 CCD, Laser 

 

3 7 Reserved --- --- 

 6 1: Enable RSS-14 & RSS Expanded 

0: Disable RSS-14 & RSS Expanded 

0 CCD, Laser 

 5 1: Transmit RSS-14 Code ID 

0: DO NOT transmit RSS-14 Code ID 

1 CCD, Laser 

 4 1: Transmit RSS-14 Application ID 

0: DO NOT transmit RSS-14 Application ID 

1 CCD, Laser 

 3 1: Transmit RSS-14 Check Digit 

0: DO NOT transmit RSS-14 Check Digit 

1 CCD, Laser 

 2 1: Transmit RSS Limited Code ID 

0: DO NOT transmit RSS Limited Code ID 

1 CCD, Laser 

 



  295 

 

 Appendix I  ScannerDesTbl Array 

 

 1 1: Transmit RSS Limited Application ID 

0: DO NOT transmit RSS Limited Application ID 

1 CCD, Laser 

 0 1: Transmit RSS Limited Check Digit 

0: DO NOT transmit RSS Limited Check Digit 

1 CCD, Laser 

 

4 7 1: Transmit RSS Expanded Code ID 

0: DO NOT transmit RSS Expanded Code ID 

1 CCD, Laser 

 6 1: Enable UPC-E1 & UPC-E0 

0: Enable UPC-E0 only 

0 CCD, Laser 

 5 - 2  Reserved --- --- 

 1 1: Verify Coop 25 Check Digit 

0: DO NOT verify Coop 25 Check Digit 

0 CCD, Laser 

 0 1: Transmit Coop 25 Check Digit 

0: DO NOT transmit Coop 25 Check Digit 

1 CCD, Laser 

Note: Currently, the support of Coop 25 is implemented on 8000, 8300 and 8400. 
 

5 7 1: Transmit Code 39 Start/Stop Character 

0: DO NOT transmit Code 39 Start/Stop Character 

0 CCD, Laser 

 6 1: Verify Code 39 Check Digit 

0: DO NOT verify Code 39 Check Digit 

0 CCD, Laser 

 5 1: Transmit Code 39 Check Digit 

0: DO NOT transmit Code 39 Check Digit 

1 CCD, Laser 

 4 1: Full ASCII Code 39 

0: Standard Code 39 

0 CCD, Laser 

 3 1: Transmit Italian Pharmacode Check Digit 

0: DO NOT transmit Italian Pharmacode Check Digit 

0 CCD, Laser 

 2 1: Transmit CIP 39 Check Digit 

0: DO NOT transmit CIP 39 Check Digit 

0 CCD, Laser 

 1 1: Verify Interleaved 25 Check Digit 

0: DO NOT verify Interleaved 25 Check Digit 

0 CCD, Laser 

 0 1: Transmit Interleaved 25 Check Digit 

0: DO NOT transmit Interleaved 25 Check Digit 

1 CCD, Laser 

 

6 7 1: Verify Industrial 25 Check Digit 

0: DO NOT verify Industrial 25 Check Digit 

0 CCD, Laser 

 6 1: Transmit Industrial 25 Check Digit 

0: DO NOT transmit Industrial 25 Check Digit 

1 CCD, Laser 

 5 1: Verify Matrix 25 Check Digit 

0: DO NOT verify Matrix 25 Check Digit 

0 CCD, Laser 

 



296 

 

CipherLab C Programming Guide 

 

 4 1: Transmit Matrix 25 Check Digit 

0: DO NOT transmit Matrix 25 Check Digit 

1 CCD, Laser 

 3 - 2 Select Interleaved 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

01 CCD, Laser 

 1 - 0 Select Industrial 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

00 CCD, Laser 

 

7 7 - 6 Select Matrix 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

10 CCD, Laser 

 5 - 4 Select Codabar Start/Stop Character 

00: abcd/abcd 

01: abcd/tn*e 

10: ABCD/ABCD 

11: ABCD/TN*E 

00 CCD, Laser 

 3 1: Transmit Codabar Start/Stop Character 

0: DO NOT transmit Codabar Start/Stop Character 

0 CCD, Laser 

 2 - 0 Reserved --- --- 
 

8 7 - 0 Reserved --- --- 
 

9 7 - 6 MSI Check Digit Verification 

00: Single Modulo 10 

01: Double Modulo 10 

10: Modulo 11 and Modulo 10 

11: Undefined 

10 CCD, Laser 

 5 - 4 MSI Check Digit Transmission 

00: Last Check Digit is NOT transmitted 

01: Both Check Digits are transmitted 

10: Both Check Digits are NOT transmitted 

11: Undefined 

01 CCD, Laser 

 



  297 

 

 Appendix I  ScannerDesTbl Array 

 

 3 1: Transmit Plessey Check Digits 

0: DO NOT transmit Plessey Check Digits 

1 CCD, Laser 

 2 1: Convert Standard Plessey to UK Plessey 

0: No conversion 

1 CCD, Laser 

 1 1: Convert UPC-E to UPC-A 

0: No conversion 

0 CCD, Laser 

 0 1: Convert UPC-A to EAN-13 

0: No conversion 

1 CCD, Laser 

 

10 7 1: Enable ISBN Conversion 

0: No conversion 

0 CCD, Laser 

 6 1: Enable ISSN Conversion 

0: No conversion 

0 CCD, Laser 

 5 1: Transmit UPC-E Check Digit 

0: DO NOT transmit UPC-E Check Digit 

1 CCD, Laser 

 4 1: Transmit UPC-A Check Digit 

0: DO NOT transmit UPC-A Check Digit 

1 CCD, Laser 

 3 1: Transmit EAN-8 Check Digit 

0: DO NOT transmit EAN8 Check Digit 

1 CCD, Laser 

 2 1: Transmit EAN-13 Check Digit 

0: DO NOT transmit EAN13 Check Digit 

1 CCD, Laser 

 1 1: Transmit UPC-E System Number 

0: DO NOT transmit UPC-E System Number 

0 CCD, Laser 

 0 1: Transmit UPC-A System Number 

0: DO NOT transmit UPC-A System Number 

1 CCD, Laser 

 

11 7 1: Convert EAN-8 to EAN-13 

0: No conversion 

0 CCD, Laser 

 6 Reserved --- --- 

 5 1: Enable GTIN 

0: Disable GTIN 

0 CCD, Laser 

 4 1: Enable Negative Barcode 

0: Disable Negative Barcode 

1 CCD, Laser 

 3 - 2 00: No Read Redundancy for Scanner Port 1 

01: One Time Read Redundancy for Scanner Port 1 

10: Two Times Read Redundancy for Scanner Port 1 

11: Three Times Read Redundancy for Scanner Port 1 

00 CCD, Laser 

 1 1: Enable UPC-E1 Triple Check 

0: Disable UPC-E1 Triple Check  

0 CCD, Laser 

 



298 

 

CipherLab C Programming Guide 

 

 0 Reserved --- --- 
 

12 7 1: Industrial 25 Code Length Limitation in Max/Min Length 
Format 

0: Industrial 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

 6 - 0 Industrial 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 
 

13 7 - 0 Industrial 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

14 7 1: Interleaved 25 Code Length Limitation in Max/Min 
Length Format 

0: Interleaved 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 
 

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 
Format 

0: Matrix 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 
 

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

18 7 1: MSI 25 Code Length Limitation in Max/Min Length 
Format 

0: MSI 25 Code Length Limitation in Fixed Length Format 

1 CCD, Laser 

 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 
 

19 7 - 0 MSI Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

20 7 - 4 Scan Mode for Scanner Port 1 

0000: Auto Off Mode 

0001: Continuous Mode 

0010: Auto Power Off Mode 

0011: Alternate Mode 

0100: Momentary Mode 

0101: Repeat Mode 

0110: Laser Mode  

0111: Test Mode 

1000: Aiming Mode 

0110 CCD, Laser 

 3 - 0 Reserved --- --- 
 

21 7 - 0 Scanner time-out duration in seconds for Aiming mode, 
Laser mode, Auto Off mode, and Auto Power Off mode 

1 ~ 255 (sec): Decode time-out 

0: No time-out 

3 sec. CCD, Laser 

 



  299 

 

 Appendix I  ScannerDesTbl Array 

 

7 – 6 Byte 1 – bit 7 is required to be 1. 

00: Decode Code 128 & EAN-128  

    (for compatibility with old firmware version) 

01: Decode EAN-128 only 

10: Decode Code 128 only 

11: Decode Code 128 & EAN-128 

00 CCD, Laser 

5 Byte 1 – bit 7 is required to be 1. 

1: Strip EAN-128 Code ID  

0: DO NOT strip EAN-128 Code ID 

  (for compatibility with old firmware version) 

0 CCD, Laser 

4 1: Enable ISBT 128 

0: Disable ISBT 128 

1 CCD, Laser 

22 

3 - 0 Reserved --- --- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



300 

 

CipherLab C Programming Guide 

 

SYMBOLOGY PARAMETER TABLE II 
 

Byte Bit Description Default Scan Engine 

7 1: Enable Code 39 

0: Disable Code 39 

1 2D, (Extra) 
Long Range 

6 1: Enable Code 32 (Italian Pharmacode) 

0: Disable Code 32 

0 2D, (Extra) 
Long Range 

5 N/A --- --- 

4 N/A --- --- 

3 1: Enable Interleaved 25 

0: Disable Interleaved 25 

1 2D, (Extra) 
Long Range 

2 1: Enable Matrix 25 

0: Disable Matrix 25 

0 8400-2D 

1 1: Enable Codabar (NW7) 

0: Disable Codabar (NW7) 

1 2D, (Extra) 
Long Range 

0 

0 1: Enable Code 93 

0: Disable Code 93 

1 2D, (Extra) 
Long Range 

 

1 7 1: Enable Code 128 

0: Disable Code 128 

1 2D, (Extra) 
Long Range 

 6 1: Enable UPC-E0 

0: Disable UPC-E0 (depends) 

1 2D, (Extra) 
Long Range 

 3 1: Enable EAN-8 

0: Disable EAN-8 (depends) 

1 2D, (Extra) 
Long Range 

 0 1: Enable EAN-13 

0: Disable EAN-13 (depends) 

1 2D, (Extra) 
Long Range 

 5 or 4 
or 2 
or 1 

1: Enable Only Addon 2 & 5 of UPC & EAN Families  

   (It requires “ANY” of the bits to be set 1.) 

0: Disable Only Addon 2 & 5 of UPC & EAN Families 

   (It requires “ALL” of the bits to be set 0.) 

 Refer to Byte 2 - bit 7 or 6; Byte 27 - bit 6 or 4. 

0 2D, (Extra) 
Long Range 

 

2 7 or 6 See above. 0 2D, (Extra) 
Long Range 

 5 1: Enable MSI 

0: Disable MSI 

1 2D, (Extra) 
Long Range 

 4 N/A --- --- 

 3 Reserved --- --- 

 2 N/A --- --- 
 



  301 

 

 Appendix I  ScannerDesTbl Array 

 

 1 N/A --- --- 

 0 N/A --- --- 
 

3    7 - 0 N/A --- --- 
 

4 7 - 6 N/A --- --- 

 5 - 0 Reserved --- --- 
 

5 7 N/A --- --- 

 6 1: Verify Code 39 Check Digit 

0: DO NOT verify Code 39 Check Digit 

0 2D, (Extra) 
Long Range 

 5 1: Transmit Code 39 Check Digit 

0: DO NOT transmit Code 39 Check Digit 

0 2D, (Extra) 
Long Range 

 4 1: Full ASCII Code 39 

0: Standard Code 39 

0 2D, (Extra) 
Long Range 

 3 - 1 N/A --- --- 

 0 1: Transmit Interleaved 25 Check Digit 

0: DO NOT transmit Interleaved 25 Check Digit 

0 2D, (Extra) 
Long Range 

 

6 7 - 6 Reserved --- --- 

 5 1: Verify Matrix 25 Check Digit 

0: DO NOT verify Matrix 25 Check Digit 

0 8400-2D 

 4 1: Transmit Matrix 25 Check Digit 

0: DO NOT transmit Matrix 25 Check Digit  

0 8400-2D 

 3 - 0 Reserved --- --- 
 

7 7 - 4 N/A --- --- 

 3 1: Transmit Codabar Start/Stop Character 

0: DO NOT transmit Codabar Start/Stop Character 

0 2D, (Extra) 
Long Range 

 2 - 0 Reserved --- --- 
 

8 7 - 0 Reserved --- --- 
 

7 - 6 MSI Check Digit Verification 

00: Single Modulo 10 

01: Double Modulo 10 

10: Modulo 11 and Modulo 10 

11: Undefined 

01 2D, (Extra) 
Long Range 

9 

5 - 4 MSI Check Digit Transmission 

00: Last check digit is NOT transmitted 

01: Both check digits are transmitted 

10: Both check digits are NOT transmitted 

11: Undefined 

00 2D, (Extra) 
Long Range 

 



302 

 

CipherLab C Programming Guide 

 

 3 - 2 N/A --- --- 

 1 1: Convert UPC-E0 to UPC-A 

0: No conversion 

0 2D, (Extra) 
Long Range 

 0 N/A --- --- 
 

10 7 - 6 N/A --- --- 

 5 1: Transmit UPC-E0 Check Digit 

0: DO NOT transmit UPC-E0 Check Digit 

1 2D, (Extra) 
Long Range 

 4 1: Transmit UPC-A Check Digit 

0: DO NOT transmit UPC-A Check Digit 

1 2D, (Extra) 
Long Range 

 3 - 2 N/A --- --- 

 1 1: Transmit UPC-E0 System Number 

0: DO NOT transmit UPC-E0 System Number 

1 2D, (Extra) 
Long Range 

 0 1: Transmit UPC-A System Number 

0: DO NOT transmit UPC-A System Number 

1 2D, (Extra) 
Long Range 

 

11 7 1: Convert EAN-8 to EAN-13 

0: No conversion 

1 2D, (Extra) 
Long Range 

 6 Reserved --- --- 

 5 - 1 N/A --- --- 

 0 Reserved --- --- 
 

12 7 - 0 N/A --- --- 
 

13 7 - 0 N/A --- --- 
 

14 7 1: Interleaved 25 Code Length Limitation in Max/Min 
Length Format 

0: Interleaved 25 Code Length Limitation in Fixed Length 
Format 

0 2D, (Extra) 
Long Range 

 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 0 2D, (Extra) 
Long Range 

 

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

 

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 
Format 

0: Matrix 25 Code Length Limitation in Fixed Length 
Format 

1 8400-2D 

 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 0 8400-2D 
 

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

0 8400-2D 

 



  303 

 

 Appendix I  ScannerDesTbl Array 

 

18 7 1: MSI 25 Code Length Limitation in Max/Min Length 
Format 

0: MSI 25 Code Length Limitation in Fixed Length Format 

1 2D, (Extra) 
Long Range 

 6 – 0 MSI Max Code Length / Fixed Length 1 Max. 31 2D, (Extra) 
Long Range 

 

19 7 – 0 MSI Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

Min. 3 2D, (Extra) 
Long Range 

 

7 – 4 Scan Mode for Scanner Port 1 

1000: Aiming Mode 

0111: Test Mode 

0110: Laser Mode 

0011: Alternate Mode 

0001: Continuous Mode 

0000: Auto-off Mode 

Any value other than the above: Laser Mode 

Laser 
Mode 

2D, (Extra) 
Long Range 

20 

3 – 0 Reserved --- --- 
 

21 7 – 0 N/A --- --- 
 

22 7 – 0 Reserved --- --- 
 

7 1: Code 39 Length Limitation in Max/Min Length Format 

0: Code 39 Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

23 

6 – 0 Code 39 Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

 

24 7 – 0 Code 39 Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

 

7 1: Transmit UPC-E1 System Number 

0: DO NOT transmit UPC-E1 System Number 

0 2D, (Extra) 
Long Range 

25 

6 1: Transmit UPC-E1 Check Digit 

0: DO NOT transmit UPC-E1 Check Digit 

0 2D, (Extra) 
Long Range 

 5 1 : Enable GS1-128 Emulation Mode for UCC/EAN 
Composite Codes 

0 : Disable GS1-128 Emulation Mode for UCC/EAN 
Composite Codes 

0 2D 

 4 1: Enable TCIF Linked Code 39 

0: Disable TCIF Linked Code 39 

1 2D 

 3 1: Convert UPC-E1 to UPC-A 

0: No conversion 

0 2D, (Extra) 
Long Range 

 



304 

 

CipherLab C Programming Guide 

 

 2 1: Enable Code 11 

0: Disable Code 11 

1 2D,  

8300-Long 
Range 

 1 1: Enable Bookland EAN 

   (Byte 1 - bit 0 for EAN-13 is required to be 1.) 

0: Disable Bookland EAN 

0 2D, (Extra) 
Long Range 

 0 1: Enable Joint Configuration of No Addon, Addon 2 & 5 
for Any Member of UPC/EAN Families 

0: Disable Joint Configuration 

0 2D, (Extra) 
Long Range 

 

26 7 1: Enable Industrial 25 (Discrete 25) 

0: Disable Industrial 25 (Discrete 25) 

1 2D, (Extra) 
Long Range 

 6 1: Enable ISBT 128 

0: Disable ISBT 128 

1 2D, (Extra) 
Long Range 

 5 1: Enable Trioptic Code 39 

0: Disable Trioptic Code 39 

0 2D, (Extra) 
Long Range 

 4 1: Enable UCC/EAN-128 

0: Disable UCC/EAN-128 

1 2D, (Extra) 
Long Range 

 3 1: Convert RSS to UPC/EAN 

0: No conversion 

0 2D, (Extra) 
Long Range 

 2 1: Enable RSS Expanded 

0: Disable RSS Expanded 

1 2D, (Extra) 
Long Range 

 1 1: Enable RSS Limited 

0: Disable RSS Limited 

1 2D, (Extra) 
Long Range 

 0 1: Enable RSS-14 

0: Disable RSS-14 

1 2D, (Extra) 
Long Range 

 

27 7 1: Enable UPC-A 

0: Disable UPC-A (depends) 

1 2D, (Extra) 
Long Range 

 5 1: Enable UPC-E1 

0: Disable UPC-E1 (depends) 

0 2D, (Extra) 
Long Range 

 6 or 4 1: Enable Only Addon 2 & 5 of UPC & EAN Families  

   (It requires “ANY” of the bits to be set 1.) 

0: Disable Only Addon 2 & 5 of UPC & EAN Families 

   (It requires “ALL” of the bits to be set 0.) 

 Refer to Byte 1 - bit 5, 4, 2 or 1; Byte 2 - bit 7 or 6. 

0 2D, (Extra) 
Long Range 

 



  305 

 

 Appendix I  ScannerDesTbl Array 

 

 3 - 2 00: UPC Never Linked 

01: UPC Always Linked 

10: Autodiscriminate UPC Composite 

11: Undefined 

01 2D 

 1 1: Enable Composite CC-A/B 

0: Disable Composite CC-A/B 

0 2D 

 0 1: Enable Composite CC-C 

0: Disable Composite CC-C 

0 2D 

 

28 7 1: Code 93 Length Limitation in Max/Min Length Format 

0: Code 93 Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

 6 - 0 Code 93 Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

 

29 7 - 0 Code 93 Min Code Length / Fixed Length2  
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

 

30 7 1: Code 11 Length Limitation in Max/Min Length Format 

0: Code 11 Length Limitation in Fixed Length Format 

0 2D,  

8300-Long 
Range 

 6 - 0 Code 11 Max Code Length / Fixed Length1 0 2D,  

8300-Long 
Range 

 

31 7 - 0 Code 11 Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D,  

8300-Long 
Range 

 

32 7 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min 
Length Format 

0: Industrial 25 (Discrete 25) Length Limitation in Fixed 
Length Format 

0 2D, (Extra) 
Long Range 

 6 - 0 Industrial 25 (Discrete 25) Max Code Length / Fixed 
Length1 

0 2D, (Extra) 
Long Range 

 

33 7 - 0 Industrial 25 (Discrete 25) Min Code Length / Fixed 
Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

 

34 7 1: Codabar Length Limitation in Max/Min Length Format 

0: Codabar Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

 6 - 0 Codabar Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

 

35 7 - 0 Codabar Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

 



306 

 

CipherLab C Programming Guide 

 

36 7 1: Transmit US Postal Check Digit 

0: DO NOT transmit US Postal Check Digit 

1 2D 

 6 1: Enable Maxicode 

0: Disable Maxicode 

1 2D 

 5 1: Enable Data Matrix 

0: Disable Data Matrix 

1 2D 

 4 1: Enable QR Code 

0: Disable QR Code 

1 2D 

 3 1: Enable US Planet 

0: Disable US Planet 

1 2D 

 2 1: Enable US Postnet 

0: Disable US Postnet 

1 2D 

 1 1: Enable MicroPDF417 

0: Disable MicroPDF417 

1 2D 

 0 1: Enable PDF417 

0: Disable PDF417 

1 2D 

 

37 7 - 6 00: DO NOT verify Interleaved 25 Check Digit 

01: Verify Interleaved 25 USS Check Digit 

10: Verify Interleaved 25 OPCC Check Digit 

11: Undefined 

00 2D, (Extra) 
Long Range 

 5 Reserved --- --- 

 4 1: Enable Japan Postal 

0: Disable Japan Postal 

1 2D 

 3 1: Enable Australian Postal 

0: Disable Australian Postal 

1 2D 

 2 1: Enable Dutch Postal 

0: Disable Dutch Postal 

1 2D 

 1 1: Enable UK Postal Check Digit 

0: Disable UK Postal Check Digit 

1 2D 

 0 1: Enable UK Postal 

0: Disable UK Postal 

1 2D 

 

38 7 - 0 Scanner time-out duration in seconds for Aiming mode, 
Laser mode and Auto-off mode 

1 ~ 255 (sec): Decode time-out 

0: No time-out (= always scanning) 

3 sec. 2D, (Extra) 
Long Range 

 



  307 

 

 Appendix I  ScannerDesTbl Array 

 

39 7 1: Enable UPC-A System Number & Country Code 

0: Disable UPC-A System Number & Country Code 

1 2D, (Extra) 
Long Range 

 6 1: Enable UPC-E System Number & Country Code 

0: Disable UPC-E System Number & Country Code 

1 2D, (Extra) 
Long Range 

 5 1: Enable UPC-E1 System Number & Country Code 

0: Disable UPC-E1 System Number & Country Code 

1 2D, (Extra) 
Long Range 

 4 1: Convert Interleaved 25 to EAN-13 

0: No conversion 

0 2D, (Extra) 
Long Range 

 3 - 2 Macro PDF Transmit / Decode Mode 

00: Passthrough all symbols 

01: Buffer all symbols / Transmit Macro PDF when 
complete 

10: Transmit any symbol in set / No particular order 

00 2D 

 1 1: Enable Macro PDF Escape Characters 

0: Disable Macro PDF Escape Characters 

0 2D 

 0 1: Enable USPS 4CB / One Code / Intelligent Mail 

0: Disable USPS 4CB / One Code / Intelligent Mail 

0 8400-2D 

 

40 7 - 6 00: Far Focus 

01: Near Focus 

10: Smart Focus 

00 8500-2D 

 5 1: Enable Decode Aiming Pattern 

0: Disable Decode Aiming Pattern 

1 2D 

 4 1: Enable Decode Illumination 

0: Disable Decode Illumination 

1 2D 

 3 1: Enable Picklist Mode 

0: Disable Picklist Mode 

0 8400-2D 

 2 - 1 1D Inverse Decoder 

00: Decode regular 1D barcode only  

01: Decode inverse 1D barcode only 

10: Decode both regular and inverse 

00 8400-2D 

 0 1: Reader sleeps during system suspend 

0: Reader is powered off during system suspend 

0 8400-2D 

 

41 7 1: Enable UPU FICS Postal 

0: Disable UPU FICS Postal 

0 8400-2D 

 6 UPC/EAN – Bookland ISBN Format 

1: UPC/EAN – Bookland ISBN 13 

0: UPC/EAN – Bookland ISBN 10 

0 8400-2D 

 



308 

 

CipherLab C Programming Guide 

 

 5 - 4 Data Matrix Inverse 

00: Decode regular Data Matrix only 

01: Decode inverse Data Matrix only 

10: Decode both regular and inverse 

00 8400-2D 

 3 - 2 Data Matrix Mirror 

00: Decode unmirrored Data Matrix only 

01: Decode mirrored Data Matrix only 

10: Decode both mirrored and unmirrored 

00 8400-2D 

 1 - 0 QR Code Inverse 

00: Decode regular QR Code only  

01: Decode inverse QR Code only  

10: Decode both regular and inverse 

00 8400-2D 

 

7 1: Enable MicroQR 

0: Disable MicroQR 

1 8400-2D 

6 1: Enable Aztec 

0: Disable Aztec 

1 8400-2D 

5 - 4 Aztec Inverse 

00: Decode regular Aztec only  

01: Decode inverse Aztec only  

10: Decode both regular and inverse 

00 8400-2D 

3 1: Enable UCC Coupon Code 

0: Disable UCC Coupon Code 

0 2D, (Extra) 
Long Range 

2 1: Enable Chinese 25 

0: Disable Chinese 25 

0 8400-2D 

42 

1 - 0 Code 11 Check Digit Verification 

00: Disable 

01: One check digit 

10: Two check digits 

00 2D, 
8300-Long 
Range 

 



  309 

 

 

Each of the scan engines can decode a number of barcode symbologies. This appendix 
describes the associated symbology parameters accordingly. 

IN THIS CHAPTER 

Scan Engine, CCD or Laser ..............................................309 
Scan Engine, 2D or (Extra) Long Range Laser.....................321 
2D Scan Engine Only ......................................................331 
 
 

SCAN ENGINE, CCD OR LASER 

CODABAR 

Byte Bit Description Default Scan Engine 

0 1 1: Enable Codabar (NW7) 

0: Disable Codabar (NW7) 

1 CCD, Laser 

7 5 - 4 Select Codabar Start/Stop Character 

00: abcd/abcd 

01: abcd/tn*e 

10: ABCD/ABCD 

11: ABCD/TN*E 

00 CCD, Laser 

7 3 1: Transmit Codabar Start/Stop Character 

0: DO NOT transmit Codabar Start/Stop Character 

0 CCD, Laser 

Select Start/Stop Character 

Select no start/stop characters, or one of the four different start/stop character pairs to be 
included in the data being transmitted. 

 abcd/abcd 

 abcd/tn*e 

 ABCD/ABCD 

 ABCD/TN*E 

Transmit Start/Stop Character 

Decide whether or not to include the start/stop characters in the data being transmitted. 
 

Appendix II 
SYMBOLOGY PARAMETERS 



310 

 

CipherLab C Programming Guide 

CODE 2 OF 5 FAMILY 

INDUSTRIAL 25 

Byte Bit Description Default Scan Engine 

0 4 1: Enable Industrial 25 

0: Disable Industrial 25 

1 CCD, Laser 

6 7 1: Verify Industrial 25 Check Digit 

0: DO NOT verify Industrial 25 Check Digit 

0 CCD, Laser 

6 6 1: Transmit Industrial 25 Check Digit 

0: DO NOT transmit Industrial 25 Check Digit 

1 CCD, Laser 

6 1 - 0 Select Industrial 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

00 CCD, Laser 

12 7 1: Industrial 25 Code Length Limitation in Max/Min Length 
Format 

0: Industrial 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

12 6 - 0 Industrial 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 

13 7 - 0 Industrial 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 

Verify Check Digit 

Decide whether or not to perform check digit verification when decoding barcodes.  

 If true and the check digit found incorrect, the barcode will not be accepted. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Select Start/Stop Pattern 

Select a suitable Start/Stop pattern for reading a specific variant of 2 of 5 symbology.  

 For example, flight tickets actually use an Industrial 2 of 5 barcode but with Interleaved 2 of 5 
start/stop pattern. In order to read this barcode, the start/stop pattern selection parameter of 
Industrial 2 of 5 should set to “Interleaved 25”. 

Length Qualification 

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan” 
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that 
the correct barcode is read by qualifying the allowable code length. 

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.  



  311 

 

 Appendix II  Symbology Parameters 

 

 If “Max/Min Length” is selected, the maximum length and the minimum length must be 
specified. It only accepts those barcodes with lengths that fall between max/min lengths 
specified. 

 

INTERLEAVED 25 

Refer to Industrial 25. 

Byte Bit Description Default Scan Engine 

0 3 1: Enable Interleaved 25 

0: Disable Interleaved 25 

1 CCD, Laser 

5 1 1: Verify Interleaved 25 Check Digit 

0: DO NOT verify Interleaved 25 Check Digit 

0 CCD, Laser 

5 0 1: Transmit Interleaved 25 Check Digit 

0: DO NOT transmit Interleaved 25 Check Digit 

1 CCD, Laser 

6 3 - 2 Select Interleaved 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

01 CCD, Laser 

14 7 1: Interleaved 25 Code Length Limitation in Max/Min 
Length Format 

0: Interleaved 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

14 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

MATRIX 25 

Refer to Industrial 25. 

Byte Bit Description Default Scan Engine 

0 2 1: Enable Matrix 25 

0: Disable Matrix 25 

0 CCD, Laser 

6 5 1: Verify Matrix 25 Check Digit 

0: DO NOT verify Matrix 25 Check Digit 

0 CCD, Laser 

6 4 1: Transmit Matrix 25 Check Digit 

0: DO NOT transmit Matrix 25 Check Digit 

1 CCD, Laser 

7 7 - 6 Select Matrix 25 Start/Stop Pattern 

00: Use Industrial 25 Start/Stop Pattern 

01: Use Interleaved 25 Start/Stop Pattern 

10 CCD, Laser 

 



312 

 

CipherLab C Programming Guide 

  10: Use Matrix 25 Start/Stop Pattern 

11: Undefined 

  

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 
Format 

0: Matrix 25 Code Length Limitation in Fixed Length 
Format 

1 CCD, Laser 

16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 

COOP 25 

Currently, the support of Coop 25 is implemented on 8000, 8300 and 8400. 

Byte Bit Description Default Scan Engine 

2 3 1: Enable Coop 25 

0: Disable Coop 25 

0 CCD, Laser 

4 1 1: Verify Coop 25 Check Digit 

0: DO NOT verify Coop 25 Check Digit 

0 CCD, Laser 

4 0 1: Transmit Coop 25 Check Digit 

0: DO NOT transmit Coop 25 Check Digit 

1 CCD, Laser 

Verify Check Digit 

Decide whether or not to perform check digit verification when decoding barcodes.  

 If true and the check digit found incorrect, the barcode will not be accepted. 

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it 
is preferred not to transmit the check digit. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

CODE 39 

Byte Bit Description Default Scan Engine 

0 7 1: Enable Code 39 

0: Disable Code 39 

1 CCD, Laser 

5 7 1: Transmit Code 39 Start/Stop Character 

0: DO NOT transmit Code 39 Start/Stop Character 

0 CCD, Laser 

5 6 1: Verify Code 39 Check Digit 

0: DO NOT verify Code 39 Check Digit 

0 CCD, Laser 



  313 

 

 Appendix II  Symbology Parameters 

 

5 5 1: Transmit Code 39 Check Digit 

0: DO NOT transmit Code 39 Check Digit 

1 CCD, Laser 

5 4 1: Full ASCII Code 39 

0: Standard Code 39 

0 CCD, Laser 

Transmit Start/Stop Character 

Decide whether or not to include the start/stop characters in the data being transmitted. 

Verify Check Digit 

Decide whether or not to perform check digit verification when decoding barcodes.  

 If true and the check digit found incorrect, the barcode will not be accepted. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Code 39 Full ASCII 

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and 
special characters. 
 

CODE 93 

Byte Bit Description Default Scan Engine 

0 0 1: Enable Code 93 

0: Disable Code 93 

1 CCD, Laser 

 



314 

 

CipherLab C Programming Guide 

CODE 128/EAN-128/ISBT 128 

Byte Bit Description Default Scan Engine 

1 7 1: Enable Code 128 & EAN-128 

0: Disable Code 128 & EAN-128 

1 CCD, Laser 

22 7 - 6 Byte 1 – bit 7 is required to be 1. 

00: Decode Code 128 & EAN-128  

    (for compatibility with old firmware version) 

01: Decode EAN-128 only 

10: Decode Code 128 only 

11: Decode Code 128 & EAN-128 

00 CCD, Laser 

22 5 Byte 1 – bit 7 is required to be 1. 

1: Strip EAN-128 Code ID  

0: DO NOT strip EAN-128 Code ID 

  (for compatibility with old firmware version) 

0 CCD, Laser 

22 4 1: Enable ISBT 128 

0: Disable ISBT 128 

1 CCD, Laser 

 

ITALIAN/FRENCH PHARMACODE 

Byte Bit Description Default Scan Engine 

0 6 1: Enable Italian Pharmacode 

0: Disable Italian Pharmacode 

0 CCD, Laser 

0 5 1: Enable CIP 39 (French Pharmacode) 

0: Disable CIP 39 

0 CCD, Laser 

5 3 1: Transmit Italian Pharmacode Check Digit 

0: DO NOT transmit Italian Pharmacode Check Digit 

0 CCD, Laser 

5 2 1: Transmit CIP 39 Check Digit 

0: DO NOT transmit CIP 39 Check Digit 

0 CCD, Laser 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 
 

Note: Share the Transmit Start/Stop Character setting with Code 39. 

 
 



  315 

 

 Appendix II  Symbology Parameters 

 

MSI 

Byte Bit Description Default Scan Engine 

2 5 1: Enable MSI 

0: Disable MSI 

0 CCD, Laser 

9 7 - 6 MSI Check Digit Verification 

00: Single Modulo 10 

01: Double Modulo 10 

10: Modulo 11 and Modulo 10 

11: Undefined 

10 CCD, Laser 

9 5 - 4 MSI Check Digit Transmission 

00: Last Check Digit is NOT transmitted 

01: Both Check Digits are transmitted 

10: Both Check Digits are NOT transmitted 

11: Undefined 

01 CCD, Laser 

18 7 1: MSI 25 Code Length Limitation in Max/Min Length 
Format 

0: MSI 25 Code Length Limitation in Fixed Length Format 

1 CCD, Laser 

18 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 64 CCD, Laser 

19 7 - 0 MSI Min Code Length / Fixed Length 2 Min. 1 CCD, Laser 
 

Verify Check Digit 

Select one of the three calculations to perform check digit verification when decoding barcodes. 

 If true and the check digit found incorrect, the barcode will not be accepted. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Length Qualification 

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To 
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct 
barcode is read by qualifying the allowable code length.  

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.  

 If “Max/Min Length” is selected, the maximum length and the minimum length must be 
specified. It only accepts those barcodes with lengths that fall between max/min lengths 
specified. 

 



316 

 

CipherLab C Programming Guide 

NEGATIVE BARCODE 

Byte Bit Description Default Scan Engine 

11 4 1: Enable Negative Barcode 

0: Disable Negative Barcode 

1 CCD, Laser 

 

PLESSEY 

Byte Bit Description Default Scan Engine 

2 4 1: Enable Plessey 

0: Disable Plessey 

0 CCD, Laser 

9 3 1: Transmit Plessey Check Digits 

0: DO NOT transmit Plessey Check Digits 

1 CCD, Laser 

9 2 1: Convert Standard Plessey to UK Plessey 

0: No conversion 

1 CCD, Laser 

Transmit Check Digits 

Decide whether or not to include the two check digits in the data being transmitted. 

Convert to UK Plessey 

Decide whether or not to change each occurrence of the character 'A' to character 'X' in the 
decoded data. 
 



  317 

 

 Appendix II  Symbology Parameters 

 

RSS FAMILY 

Byte Bit Description Default Scan Engine 

2 0 1: Enable RSS Limited 

0: Disable RSS Limited 

0 CCD, Laser 

3 6 1: Enable RSS-14 & RSS Expanded 

0: Disable RSS-14 & RSS Expanded 

0 CCD, Laser 

3 5 1: Transmit RSS-14 Code ID 

0: DO NOT transmit RSS-14 Code ID 

1 CCD, Laser 

3 4 1: Transmit RSS-14 Application ID 

0: DO NOT transmit RSS-14 Application ID 

1 CCD, Laser 

3 3 1: Transmit RSS-14 Check Digit 

0: DO NOT transmit RSS-14 Check Digit 

1 CCD, Laser 

3 2 1: Transmit RSS Limited Code ID 

0: DO NOT transmit RSS Limited Code ID 

1 CCD, Laser 

3 1 1: Transmit RSS Limited Application ID 

0: DO NOT transmit RSS Limited Application ID 

1 CCD, Laser 

3 0 1: Transmit RSS Limited Check Digit 

0: DO NOT transmit RSS Limited Check Digit 

1 CCD, Laser 

4 7 1: Transmit RSS Expanded Code ID 

0: DO NOT transmit RSS Expanded Code ID 

1 CCD, Laser 

Transmit Code ID 

Decide whether or not to include the Code ID (“]e0”) in the data being transmitted. 

Transmit Application ID 

Decide whether or not to include the Application ID (“01”) in the data being transmitted. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 
 



318 

 

CipherLab C Programming Guide 

TELEPEN 

Byte Bit Description Default Scan Engine 

2 2 1: Enable Telepen 

0: Disable Telepen 

0 CCD, Laser 

2 1 1: Enable original Telepen (= Numeric mode) 

0: Disable original Telepen (= ASCII mode) 

0 CCD, Laser 

Original Telepen (Numeric) 

Decide whether or not to support Telepen in full ASCII code. By default, it supports ASCII mode. 

 AIM Telepen (Full ASCII) includes all the alphanumeric and special characters. 

UPC/EAN FAMILIES 

EAN-8 

Byte Bit Description Default Scan Engine 

1 3 1: Enable EAN-8 

0: Disable EAN-8 

1 CCD, Laser 

1 2 1: Enable EAN-8 Addon 2 

0: Disable EAN-8 Addon 2 

0 CCD, Laser 

1 1 1: Enable EAN-8 Addon 5 

0: Disable EAN-8 Addon 5 

0 CCD, Laser 

10 3 1: Transmit EAN-8 Check Digit 

0: DO NOT transmit EAN8 Check Digit 

1 CCD, Laser 

11 7 1: Convert EAN-8 to EAN-13 

0: No conversion 

0 CCD, Laser 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Convert EAN-8 to EAN-13 

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next 
processing will follow the parameters configured for EAN-13. 

EAN-13 

Byte Bit Description Default Scan Engine 

1 0 1: Enable EAN-13 & UPC-A 

0: Disable EAN-13 & UPC-A 

1 CCD, Laser 



  319 

 

 Appendix II  Symbology Parameters 

 

2 7 1: Enable EAN-13 & UPC-A Addon 2 

0: Disable EAN-13 & UPC-A Addon 2 

0 CCD, Laser 

2 6 1: Enable EAN-13 & UPC-A Addon 5 

0: Disable EAN-13 & UPC-A Addon 5 

0 CCD, Laser 

10 7 1: Enable ISBN Conversion 

0: No conversion 

0 CCD, Laser 

10 6 1: Enable ISSN Conversion 

0: No conversion 

0 CCD, Laser 

10 2 1: Transmit EAN-13 Check Digit 

0: DO NOT transmit EAN13 Check Digit 

1 CCD, Laser 

Convert EAN-13 to ISBN 

Decide whether or not to convert the EAN-13 barcode, starting with 978 and 979, to ISBN. 

Convert EAN-13 to ISSN 

Decide whether or not to convert the EAN-13 barcode, starting with 977 to ISSN. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

GTIN 

Byte Bit Description Default Scan Engine 

11 5 1: Enable GTIN 

0: Disable GTIN 

0 CCD, Laser 

UPC-A 

Byte Bit Description Default Scan Engine 

9 0 1: Convert UPC-A to EAN-13 

0: No conversion 

1 CCD, Laser 

10 4 1: Transmit UPC-A Check Digit 

0: DO NOT transmit UPC-A Check Digit 

1 CCD, Laser 

10 0 1: Transmit UPC-A System Number 

0: DO NOT transmit UPC-A System Number 

1 CCD, Laser 

Convert UPC-A to EAN-13 

Decide whether or not to expand the read UPC-A barcode into EAN-13. If true, the next 
processing will follow the parameters configured for EAN-13. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 



320 

 

CipherLab C Programming Guide 

Transmit System Number 

Decide whether or not to include the system number in the data being transmitted. 

Note: UPC-A is to be enabled together with EAN-13, therefore, check associated EAN-13 
settings first. 

 

UPC-E 

Byte Bit Description Default Scan Engine 

1 6 1: Enable UPC-E 

0: Disable UPC-E 

1 CCD, Laser 

1 5 1: Enable UPC-E Addon 2 

0: Disable UPC-E Addon 2 

0 CCD, Laser 

1 4 1: Enable UPC-E Addon 5 

0: Disable UPC-E Addon 5 

0 CCD, Laser 

4 6 1: Enable UPC-E1 & UPC-E0 

0: Enable UPC-E0 only 

0 CCD, Laser 

9 1 1: Convert UPC-E to UPC-A 

0: No conversion 

0 CCD, Laser 

10 5 1: Transmit UPC-E Check Digit 

0: DO NOT transmit UPC-E Check Digit 

1 CCD, Laser 

10 1 1: Transmit UPC-E System Number 

0: DO NOT transmit UPC-E System Number 

0 CCD, Laser 

11 1 1: Enable UPC-E1 Triple Check 

0: Disable UPC-E1 Triple Check  

0 CCD, Laser 

Convert UPC-E to UPC-A 

Decide whether or not to expand the read UPC-E barcode into UPC-A. If true, the next processing 
will follow the parameters configured for UPC-A. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Transmit System Number 

Decide whether or not to include the system number in the data being transmitted. 

UPC-E1 Triple Check 

Decide whether or not to apply read redundancy to the UPC-E1 barcode. If true, the same UPC-E1 
barcode has to be read three times to make a valid reading.  

 This is helpful when the barcode is defaced and requires more attempts to read it successfully. 
 
 



  321 

 

 Appendix II  Symbology Parameters 

 

SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER 

CODABAR 

Byte Bit Description Default Scan Engine 

0 1 1: Enable Codabar (NW7) 

0: Disable Codabar (NW7) 

1 2D, (Extra) 
Long Range 

7 3 1: Transmit Codabar Start/Stop Character 

0: DO NOT transmit Codabar Start/Stop Character 

0 2D, (Extra) 
Long Range 

34 7 1: Codabar Length Limitation in Max/Min Length Format 

0: Codabar Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

34 6 - 0 Codabar Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

35 7 - 0 Codabar Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

Transmit Start/Stop Character 

Decide whether or not to include the start/stop characters in the data being transmitted. 

Length Qualification 

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode 
refers to the number of characters (= human readable characters), including check digit(s) it 
contains. 

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.  

 If “Max/Min Length” is selected, the maximum length and the minimum length must be 
specified. It only accepts those barcodes with lengths that fall between max/min lengths 
specified. 

Note: When it is configured to use Fixed Length format, Length1 must be greater than 
Length2. Otherwise, the format will be converted to Max/Min Length Format, and 
Length1 becomes Min. Length while Length2 becomes Max. Length. In either 
length format, when both of the values are configured to 0, it means no limit in 
length. 

 

CODE 2 OF 5 

INDUSTRIAL 25 (DISCRETE 25) 

Byte Bit Description Default Scan Engine 

26 7 1: Enable Industrial 25 (Discrete 25) 

0: Disable Industrial 25 (Discrete 25) 

1 2D, (Extra) 
Long Range 

 



322 

 

CipherLab C Programming Guide 

32 7 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min 
Length Format 

0: Industrial 25 (Discrete 25) Length Limitation in Fixed 
Length Format 

0 2D, (Extra) 
Long Range 

32 6 - 0 Industrial 25 (Discrete 25) Max Code Length / Fixed 
Length1 

0 2D, (Extra) 
Long Range 

33 7 - 0 Industrial 25 (Discrete 25) Min Code Length / Fixed 
Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

Length Qualification 

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan” 
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that 
the correct barcode is read by qualifying the allowable code length. Refer to Codabar. 

INTERLEAVED 25 

Byte Bit Description Default Scan Engine 

0 3 1: Enable Interleaved 25 

0: Disable Interleaved 25 

1 2D, (Extra) 
Long Range 

5 0 1: Transmit Interleaved 25 Check Digit 

0: DO NOT transmit Interleaved 25 Check Digit 

0 2D, (Extra) 
Long Range 

14 7 1: Interleaved 25 Code Length Limitation in Max/Min 
Length Format 

0: Interleaved 25 Code Length Limitation in Fixed Length 
Format 

0 2D, (Extra) 
Long Range 

14 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 0 2D, (Extra) 
Long Range 

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

37 7 - 6 00: DO NOT verify Interleaved 25 Check Digit 

01: Verify Interleaved 25 USS Check Digit 

10: Verify Interleaved 25 OPCC Check Digit 

11: Undefined 

00 2D, (Extra) 
Long Range 

39 4 1: Convert Interleaved 25 to EAN-13 

0: No conversion 

0 2D, (Extra) 
Long Range 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

 
 
 
 



  323 

 

 Appendix II  Symbology Parameters 

 

Length Qualification 

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan” 
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that 
the correct barcode is read by qualifying the allowable code length. Refer to Codabar. 

Verify Check Digit 

Decide whether or not to perform check digit verification when decoding barcodes.  

 If true and the check digit found incorrect, the barcode will not be accepted. 

Convert to EAN-13 

Decide whether or not to convert a 14-character Interleaved 25 barcode into EAN-13. If true, the 
next processing will follow the parameters configured for EAN-13. 

 Interleaved 25 barcode must have a leading zero and a valid EAN-13 check digit. 

Note: “Convert Interleaved 25 to EAN-13” cannot be enabled unless check digit 
verification is disabled (= 00). 

CODE 39 

Byte Bit Description Default Scan Engine 

0 7 1: Enable Code 39 

0: Disable Code 39 

1 2D, (Extra) 
Long Range 

0 6 1: Enable Code 32 (Italian Pharmacode) 

0: Disable Code 32 

0 2D, (Extra) 
Long Range 

5 6 1: Verify Code 39 Check Digit 

0: DO NOT verify Code 39 Check Digit 

0 2D, (Extra) 
Long Range 

5 5 1: Transmit Code 39 Check Digit 

0: DO NOT transmit Code 39 Check Digit 

0 2D, (Extra) 
Long Range 

5 4 1: Full ASCII Code 39 

0: Standard Code 39 

0 2D, (Extra) 
Long Range 

23 7 1: Code 39 Length Limitation in Max/Min Length Format 

0: Code 39 Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

23 6 - 0 Code 39 Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

24 7 - 0 Code 39 Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

26 5 1: Enable Trioptic Code 39 

0: Disable Trioptic Code 39 

0 2D, (Extra) 
Long Range 

 
 



324 

 

CipherLab C Programming Guide 

Verify Check Digit 

Decide whether or not to perform check digit verification when decoding barcodes.  

 If true and the check digit found incorrect, the barcode will not be accepted. 

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it 
is preferred not to transmit the check digit. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Code 39 Full ASCII 

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and 
special characters. 

Length Qualification 

Refer to Codabar. 

CODE 93 

Byte Bit Description Default Scan Engine 

0 0 1: Enable Code 93 

0: Disable Code 93 

1 2D, (Extra) 
Long Range 

28 7 1: Code 93 Length Limitation in Max/Min Length Format 

0: Code 93 Length Limitation in Fixed Length Format 

0 2D, (Extra) 
Long Range 

28 6 - 0 Code 93 Max Code Length / Fixed Length1 0 2D, (Extra) 
Long Range 

29 7 - 0 Code 93 Min Code Length / Fixed Length2  
Note Length1 must be greater than Length2. 

0 2D, (Extra) 
Long Range 

Length Qualification 

Refer to Codabar. 

CODE 128 

CODE 128 

Byte Bit Description Default Scan Engine 

1 7 1: Enable Code 128 

0: Disable Code 128 

1 2D, (Extra) 
Long Range 

 



  325 

 

 Appendix II  Symbology Parameters 

 

ISBT 128 

Byte Bit Description Default Scan Engine 

26 6 1: Enable ISBT 128 

0: Disable ISBT 128 

1 2D, (Extra) 
Long Range 

Note: ISBT 128 is a variant of Code 128 used in the blood bank industry. 

UCC/EAN-128 

Byte Bit Description Default Scan Engine 

26 4 1: Enable UCC/EAN-128 

0: Disable UCC/EAN-128 

1 2D, (Extra) 
Long Range 

MSI 

Byte Bit Description Default Scan Engine 

2 5 1: Enable MSI 

0: Disable MSI 

1 2D, (Extra) 
Long Range 

9 7 - 6 MSI Check Digit Verification 

00: Single Modulo 10 

01: Double Modulo 10 

10: Modulo 11 and Modulo 10 

11: Undefined 

01 2D, (Extra) 
Long Range 

9 5 - 4 MSI Check Digit Transmission 

00: Last check digit is NOT transmitted 

01: Both check digits are transmitted 

10: Both check digits are NOT transmitted 

11: Undefined 

00 2D, (Extra) 
Long Range 

18 7 1: MSI 25 Code Length Limitation in Max/Min Length 
Format 

0: MSI 25 Code Length Limitation in Fixed Length Format 

1 2D, (Extra) 
Long Range 

18 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 31 2D, (Extra) 
Long Range 

19 7 - 0 MSI Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

Min. 3 2D, (Extra) 
Long Range 

Verify Check Digit 

Select one of the three calculations to perform check digit verification when decoding barcodes. 

 If true and the check digit found incorrect, the barcode will not be accepted. 



326 

 

CipherLab C Programming Guide 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

Length Qualification 

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To 
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct 
barcode is read by qualifying the allowable code length. Refer to Codabar. 

RSS FAMILY 

Byte Bit Description Default Scan Engine 

26 3 1: Convert RSS to UPC/EAN 

0: No conversion 

0 2D, (Extra) 
Long Range 

26 2 1: Enable RSS Expanded 

0: Disable RSS Expanded 

1 2D, (Extra) 
Long Range 

26 1 1: Enable RSS Limited 

0: Disable RSS Limited 

1 2D, (Extra) 
Long Range 

26 0 1: Enable RSS-14 

0: Disable RSS-14 

1 2D, (Extra) 
Long Range 

Convert RSS to UPC/EAN 

Decide whether or not to convert the RSS barcodes to UPC/EAN. If true, 

(1) The leading “010” will be stripped from these barcodes and a “0” will be encoded as the first 
digit; this will convert RSS barcodes to EAN-13. 

(2) For barcodes beginning with two or more zeros but not six zeros, this option will strip the 
leading “0010” and report the barcode as UPC-A. The UPC-A Preamble setting that transmits the 
system character and country code applies to such converted barcodes.  

Note that neither the system character nor the check digit can be stripped. 

 This only applies to RSS-14 and RSS Limited barcodes not decoded as part of a Composite 
barcode.  

UPC/EAN FAMILIES 

The UPC/EAN families include No Addon, Addon 2, and Addon 5 for the following 
symbologies: 

 UPC-E0 

 UPC-E1 

 UPC-A 

 EAN-8 

 EAN-13 

 Bookland EAN (ISBN) 



  327 

 

 Appendix II  Symbology Parameters 

 

For any member belonging to the UPC/EAN families, Bit 0 of Byte 25 is used to decide 
the joint configuration of No Addon, Addon 2, and Addon 5. Other parameters are listed 
below. 

Byte Bit Description Default Scan Engine 

9 1 1: Convert UPC-E0 to UPC-A 

0: No conversion 

0 2D, (Extra) 
Long Range 

10 5 1: Transmit UPC-E0 Check Digit 

0: DO NOT transmit UPC-E0 Check Digit 

1 2D, (Extra) 
Long Range 

10 4 1: Transmit UPC-A Check Digit 

0: DO NOT transmit UPC-A Check Digit 

1 2D, (Extra) 
Long Range 

10 1 1: Transmit UPC-E0 System Number 

0: DO NOT transmit UPC-E0 System Number 

1 2D, (Extra) 
Long Range 

10 0 1: Transmit UPC-A System Number 

0: DO NOT transmit UPC-A System Number 

1 2D, (Extra) 
Long Range 

11 7 1: Convert EAN-8 to EAN-13 

0: No conversion 

1 2D, (Extra) 
Long Range 

25 7 1: Transmit UPC-E1 System Number 

0: DO NOT transmit UPC-E1 System Number 

0 2D, (Extra) 
Long Range 

25 6 1: Transmit UPC-E1 Check Digit 

0: DO NOT transmit UPC-E1 Check Digit 

0 2D, (Extra) 
Long Range 

25 3 1: Convert UPC-E1 to UPC-A 

0: No conversion 

0 2D, (Extra) 
Long Range 

39 7 1: Enable UPC-A System Number & Country Code 

0: Disable UPC-A System Number & Country Code 

1 2D, (Extra) 
Long Range 

39 6 1: Enable UPC-E System Number & Country Code 

0: Disable UPC-E System Number & Country Code 

1 2D, (Extra) 
Long Range 

39 5 1: Enable UPC-E1 System Number & Country Code 

0: Disable UPC-E1 System Number & Country Code 

1 2D, (Extra) 
Long Range 

Convert UPC-E0/UPC-E1 to UPC-A 

Decide whether or not to expand the read UPC-E0/UPC-E1 barcode into UPC-A. If true, the next 
processing will follow the parameters configured for UPC-A. 

Convert EAN-8 to EAN-13 

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next 
processing will follow the parameters configured for EAN-13. 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 



328 

 

CipherLab C Programming Guide 

Transmit System Number 

Decide whether or not to include the system number will be included in the data being 
transmitted. 
 

UCC COUPON CODE 

Byte Bit Description Default Scan Engine 

42 3 1: Enable UCC Coupon Code 

0: Disable UCC Coupon Code 

0 2D, (Extra) 
Long Range 

JOINT CONFIGURATION 

Byte Bit Description Default Scan Engine 

25 0 1: Enable Joint Configuration of No Addon, Addon 2 & 5 
for Any Member of UPC/EAN Families 

0: Disable Joint Configuration 

0 2D, (Extra) 
Long Range 

 If Byte 25 - bit 0 for joint configuration is set to 1, the parameters of Table I can be 
configured separately. It depends on which member of the families needs to be 
enabled. 

 If Byte 25 - bit 0 for Joint Configuration is set to 0, then  

- When “ANY” of the bits of Table II is set to 1, only Addon 2 & 5 of the whole 
UPC/EAN families is enabled. (= Disable No Addon) 

- When “ALL” of the bits of Table II are set to 0, only No Addon is enabled that is 
further decided by Table I. 

When   Results in  

Byte 25 - bit 0 Byte/bit listed in  

Table I 

Byte/bit listed in  

Table II 

No Addon Addon 2 & 5 

= 1 = 1 N/A Enabled Enabled 

= 1 = 0 N/A Disabled Disabled 

= 0 N/A Any = 1 DisabledNote 

(All) 

EnabledNote 

(All) 

= 0 = 1 All = 0 Enabled DisabledNote 

(All) 

= 0 = 0 = 0 Disabled DisabledNote 

(All) 

Note: The result marked with “All” indicates it occurs with the whole UPC/EAN families. 
 



  329 

 

 Appendix II  Symbology Parameters 

 

TABLE I 

Byte Bit Description Default Scan Engine 

1 6 1: Enable UPC-E0 

0: Disable UPC-E0 (depends) 

1 2D, (Extra) 
Long Range 

1 3 1: Enable EAN-8 

0: Disable EAN-8 (depends) 

1 2D, (Extra) 
Long Range 

1 0 1: Enable EAN-13 

0: Disable EAN-13 (depends) 

1 2D, (Extra) 
Long Range 

25 1 1: Enable Bookland EAN 

   (Byte 1 - bit 0 for EAN-13 is required to be 1.) 

0: Disable Bookland EAN 

0 2D, (Extra) 
Long Range 

27 7 1: Enable UPC-A 

0: Disable UPC-A (depends) 

1 2D, (Extra) 
Long Range 

27 5 1: Enable UPC-E1 

0: Disable UPC-E1 (depends) 

0 2D, (Extra) 
Long Range 

Note: (1) If Byte 25 - bit 0 is set to 1, No Addon, Addon 2, Addon 5 of the symbology 
are enabled. (2) If Byte 25 - bit 0 is set to 0 (and all bits in Table II below must be 
set 0): Only No Addon of the symbology is enabled. 

TABLE II 

Byte Bit Description Default Scan Engine 

1 5 or 
4 or 
2 or 
1 

2 7 or 
6 

27 6 or 
4 

1: Enable Only Addon 2 & 5 of UPC & EAN Families  

   (It requires “ANY” of the bits to be set 1.) 

0: Disable Only Addon 2 & 5 of UPC & EAN Families 

   (It requires “ALL” of the bits to be set 0.) 

0 2D, (Extra) 
Long Range 

 

 

 

 

 

 



330 

 

CipherLab C Programming Guide 

CODE 11 

The support of Code 11 on Long Range scan engine is currently implemented for 8300 
only. 

Byte Bit Description Default Scan Engine 

25 2 1: Enable Code 11 

0: Disable Code 11 

1 2D,  

8300-Long 
Range 

30 7 1: Code 11 Length Limitation in Max/Min Length Format 

0: Code 11 Length Limitation in Fixed Length Format 

0 2D,  

8300-Long 
Range 

30 6 - 0 Code 11 Max Code Length / Fixed Length1 0 2D,  

8300-Long 
Range 

31 7 - 0 Code 11 Min Code Length / Fixed Length2 
Note Length1 must be greater than Length2. 

0 2D,  

8300-Long 
Range 

42 1 - 0 Code 11 Check Digit Verification 

00: Disable 

01: One check digit 

10: Two check digits 

00 2D,  

8300-Long 
Range 

Length Qualification 

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode 
refers to the number of characters (= human readable characters), including check digit(s) it 
contains. 

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.  

 If “Max/Min Length” is selected, the maximum length and the minimum length must be 
specified. It only accepts those barcodes with lengths that fall between max/min lengths 
specified. 

Note: When it is configured to use Fixed Length format, Length1 must be greater than 
Length2. Otherwise, the format will be converted to Max/Min Length Format, and 
Length1 becomes Min. Length while Length2 becomes Max. Length. In either 
length format, when both of the values are configured to 0, it means no limit in 
length. 

 
 



  331 

 

 Appendix II  Symbology Parameters 

 

2D SCAN ENGINE ONLY 

In addition to those symbologies described previously, the 2D scan engine supports the 
following symbologies: 

1D SYMBOLOGIES 

CHINESE 25 

Byte Bit Description Default Scan Engine 

42 2 1: Enable Chinese 25 

0: Disable Chinese 25 

0 8400-2D 

MATRIX 25 

Byte Bit Description Default Scan Engine 

0 2 1: Enable Matrix 25 

0: Disable Matrix 25 

0 8400-2D 

6 5 1: Verify Matrix 25 Check Digit 

0: DO NOT verify Matrix 25 Check Digit 

0 8400-2D 

6 4 1: Transmit Matrix 25 Check Digit 

0: DO NOT transmit Matrix 25 Check Digit  

0 8400-2D 

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length 
Format 

0: Matrix 25 Code Length Limitation in Fixed Length 
Format 

1 8400-2D 

16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 0 8400-2D 

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 
Note Length1 must be greater than Length2. 

0 8400-2D 

UPC/EAN — BOOKLAND ISBN FORMAT 

Byte Bit Description Default Scan Engine 

41 6 UPC/EAN – Bookland ISBN Format 

1: UPC/EAN – Bookland ISBN 13 

0: UPC/EAN – Bookland ISBN 10 

0 8400-2D 

 

 

 



332 

 

CipherLab C Programming Guide 

1D INVERSE 

Byte Bit Description Default Scan Engine 

40 2 - 1 1D Inverse Decoder 

00: Decode regular 1D barcode only  

01: Decode inverse 1D barcode only 

10: Decode both regular and inverse 

00 8400-2D 

 

POSTAL CODE FAMILY 

Byte Bit Description Default Scan Engine 

36 7 1: Transmit US Postal Check Digit 

0: DO NOT transmit US Postal Check Digit 

1 2D 

36 3 1: Enable US Planet 

0: Disable US Planet 

1 2D 

36 2 1: Enable US Postnet 

0: Disable US Postnet 

1 2D 

37 4 1: Enable Japan Postal 

0: Disable Japan Postal 

1 2D 

37 3 1: Enable Australian Postal 

0: Disable Australian Postal 

1 2D 

37 2 1: Enable Dutch Postal 

0: Disable Dutch Postal 

1 2D 

37 1 1: Enable UK Postal Check Digit 

0: Disable UK Postal Check Digit 

1 2D 

37 0 1: Enable UK Postal 

0: Disable UK Postal 

1 2D 

Transmit Check Digit 

Decide whether or not to include the check digit in the data being transmitted. 

39 0 1: Enable USPS 4CB / One Code / Intelligent Mail 

0: Disable USPS 4CB / One Code / Intelligent Mail 

0 8400-2D 

41 7 1: Enable UPU FICS Postal 

0: Disable UPU FICS Postal 

0 8400-2D 

 
 



  333 

 

 Appendix II  Symbology Parameters 

 

COMPOSITE CODES 

CC-A/B/C 

Byte Bit Description Default Scan Engine 

27 1 1: Enable Composite CC-A/B 

0: Disable Composite CC-A/B 

0 2D 

27 0 1: Enable Composite CC-C 

0: Disable Composite CC-C 

0 2D 

TLC-39 

Byte Bit Description Default Scan Engine 

25 4 1: Enable TCIF Linked Code 39 

0: Disable TCIF Linked Code 39 

1 2D 

Note: Code 39 must be enabled first! 

UPC COMPOSITE 

Byte Bit Description Default Scan Engine 

27 3 - 2 00: UPC Never Linked 

01: UPC Always Linked 

10: Autodiscriminate UPC Composite 

11: Undefined 

01 2D 

Select UPC Composite Mode 

UPC barcode can be “linked” with a 2D barcode during transmission as if they were one barcode.  

There are three options for these barcodes: 

UPC Never Linked 

Transmit UPC barcodes regardless of whether a 2D barcode is detected. 

UPC Always Linked 

Transmit UPC barcodes and the 2D portion. If the 2D portion is not detected, the UPC barcode 
will not be transmitted. 

 CC-A/B or CC-C must be enabled! 

Auto-discriminate UPC Composites 

Transmit UPC barcodes as well as the 2D portion if present. 
 



334 

 

CipherLab C Programming Guide 

Note: If “UPC Always Linked” is enabled, either CC-A/B or CC-C must be enabled. 
Otherwise, it will not transmit even there are UPC barcodes. 

GS1-128 EMULATION MODE FOR UCC/EAN COMPOSITE CODES 

Byte Bit Description Default Scan Engine 

25 5 1 : Enable GS1-128 Emulation Mode for UCC/EAN 
Composite Codes 

0 : Disable GS1-128 Emulation Mode for UCC/EAN 
Composite Codes 

0 2D 

 



  335 

 

 Appendix II  Symbology Parameters 

 

2D SYMBOLOGIES 

MAXICODE, DATA MATRIX & QR CODE 

Byte Bit Description Default Scan Engine 

36 6 1: Enable Maxicode 

0: Disable Maxicode 

1 2D 

36 5 1: Enable Data Matrix 

0: Disable Data Matrix 

1 2D 

36 4 1: Enable QR Code 

0: Disable QR Code 

1 2D 

42 7 1: Enable MicroQR 

0: Disable MicroQR 

1 8400-2D 

42 6 1: Enable Aztec 

0: Disable Aztec 

1 8400-2D 

2D INVERSE/MIRROR 

Byte Bit Description Default Scan Engine 

41 5 – 4 Data Matrix Inverse 

00: Decode regular Data Matrix only 

01: Decode inverse Data Matrix only 

10: Decode both regular and inverse 

00 8400-2D 

41 3 - 2 Data Matrix Mirror 

00: Decode unmirrored Data Matrix only 

01: Decode mirrored Data Matrix only 

10: Decode both mirrored and unmirrored 

00 8400-2D 

41 1 – 0 QR Code Inverse 

00: Decode regular QR Code only  

01: Decode inverse QR Code only  

10: Decode both regular and inverse 

00 8400-2D 

42 5 - 4 Aztec Inverse 

00: Decode regular Aztec only  

01: Decode inverse Aztec only  

10: Decode both regular and inverse 

00 8400-2D 

 

 



336 

 

CipherLab C Programming Guide 

PDF417 

Byte Bit Description Default Scan Engine 

36 1 1: Enable MicroPDF417 

0: Disable MicroPDF417 

1 2D 

36 0 1: Enable PDF417 

0: Disable PDF417 

1 2D 

39 3 - 2 Macro PDF Transmit / Decode Mode 

00: Passthrough all symbols 

01: Buffer all symbols / Transmit Macro PDF when 
complete 

10: Transmit any symbol in set / No particular order 

00 2D 

39 1 1: Enable Macro PDF Escape Characters 

0: Disable Macro PDF Escape Characters 

0 2D 

Macro PDF Transmit / Decode Mode 

Macro PDF is a special feature for concatenating multiple PDF barcodes into one file, known as 
Macro PDF417 or Macro MicroPDF417.  

Decide how to handle Macro PDF decoding - 

Buffer All Symbols / Transmit Macro PDF When Complete 

Transmit all decoded data from an entire Macro PDF sequence only when the entire sequence is 
scanned and decoded. If the decoded data exceeds the limit of 50 symbols, no transmission 
because the entire sequence was not scanned! 

 The transmission of the control header must be disabled. 

Transmit Any Symbol in Set / No Particular Order 

Transmit data from each Macro PDF symbol as decoded, regardless of the sequence.  

 The transmission of the control header must be enabled. 

Passthrough All Symbols 

Transmit and decode all Macro PDF symbols and perform no processing. In this mode, the host 
is responsible for detecting and parsing the Macro PDF sequences. 

 

Macro PDF Escape Characters 

Decide whether or not to transmit the Escape character. If true, it uses the backslash “\” as an 
Escape character for systems that can process transmissions containing special data sequences.  

 It will format special data according to the Global Label Identifier (GLI) protocol, which only 
affects the data portion of a Macro PDF symbol transmission. The Control Header is always 
sent with GLI formatting. 

 
 
 

 
 



  337 

 

 

This appendix describes the associated scanner parameters. 

 

IN THIS CHAPTER 

Scan Mode ....................................................................337 
Read Redundancy ..........................................................340 
Time-Out ......................................................................341 
User Preferences ............................................................341 
 
 

SCAN MODE 

Byte 20 of the unsigned character array ScannerDesTbl is used to define a scan mode 
that best suits the requirements of a specific application. Refer to Time-Out. 

Byte Bit Description Default Scan Engine 

20 7 - 4 Scan Mode for Scanner Port 1 

0000: Auto Off Mode 

0001: Continuous Mode 

0010: Auto Power Off Mode 

0011: Alternate Mode 

0100: Momentary Mode 

0101: Repeat Mode 

0110: Laser Mode 

0111: Test Mode 

1000: Aiming Mode  

Laser 
Mode 

CCD, Laser 

20 7 - 4 Scan Mode for Scanner Port 1 

1000: Aiming Mode 

0111: Test Mode 

0110: Laser Mode 

0011: Alternate Mode 

0001: Continuous Mode 

0000: Auto-off Mode 

Any value other than the above: Laser Mode 

Laser 
Mode 

2D, (Extra) 
Long Range 

 
 
 

Appendix III 
SCANNER PARAMETERS 



338 

 

CipherLab C Programming Guide 

 

 For CCD or Laser scan engine, it supports 9 scan modes. See the comparison table 
below. Byte 21 is used for timeout duration, if necessary. 

 For (Extra) Long Range Laser scan engine, it only supports Laser and Aiming modes. 

When in aiming mode, it will generate an aiming dot once you press the trigger key.  

The aiming dot will not go off until it times out or you press the trigger key again to 
start scanning. Byte 38 is used for timeout duration, if necessary. 

COMPARISON TABLE 

Scan Mode Start to Scan Stop Scanning 

 Always Press 
trigger 
once 

Hold 
trigger 

Press 
trigger 
twice 

Release 
trigger 

Press 
trigger 
once 

Barcode 
being 
read 

Timeout 

Continuous mode 9        

Test mode 9        

Repeat mode 9        

Momentary mode   9  9    

Alternate mode  9    9   

Aiming mode    9   9 9 

Laser mode   9  9  9 9 

Auto Off mode  9     9 9 

Auto Power Off 
mode 

 9      9 

 

Continuous Mode 

Non-stop scanning 

 To decode the same barcode repeatedly, move away the scan beam and target it at the 
barcode for each scanning. 

Test Mode 

Non-stop scanning (for testing purpose) 

 Capable of decoding the same barcode repeatedly. 

Repeat Mode 

Non-stop scanning 

 Capable of re-transmitting barcode data if triggering within one second after a successful 
decoding. 

 Such re-transmission can be activated as many times as needed, as long as the time interval 
between each triggering does not exceed one second. 

 



  339 

 

 Appendix III  Scanner Parameters 

 

Momentary Mode 

Hold down the scan trigger to start with scanning. 

 The scanning won't stop until you release the trigger. 

Alternate Mode 

Press the scan trigger to start with scanning. 

 The scanning won't stop until you press the trigger again. 

Aiming Mode 

Press the scan trigger to aim at a barcode. Within one second, press the trigger again to decode 
the barcode.  

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c) 
you release the trigger. 

Note: The system global variable AIMING_TIMEOUT can be used to change the default 
one-second timeout interval for aiming. The unit for this variable is 5 ms. 

Laser Mode 

Hold down the scan trigger to start with scanning. 

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c) 
you release the trigger. 

Auto Off Mode 

Press the scan trigger to start with scanning. 

 The scanning won't stop until (a) a barcode is decoded, or (b) the preset timeout expires. 

Auto Power Off Mode 

Press the scan trigger to start with scanning. 

 The scanning won't stop until the pre-set timeout expires, and, the preset timeout period 
re-counts after each successful decoding. 

 
 
 



340 

 

CipherLab C Programming Guide 

 

READ REDUNDANCY 

This parameter is used to specify the level of reading security. You will have to 
compromise between reading security and decoding speed. 

Byte Bit Description Default Scan Engine 

11 3 - 2 00: No Read Redundancy for Scanner Port 1 

01: One Time Read Redundancy for Scanner Port 1 

10: Two Times Read Redundancy for Scanner Port 1 

11: Three Times Read Redundancy for Scanner Port 1 

00 CCD, Laser 

 No Redundancy:   

If “No Redundancy” is selected, one successful decoding will make the reading valid 
and induce the “READER Event”. 

 One/Two/Three Times:  

If “Three Times” is selected, it will take a total of four consecutive successful 
decodings of the same barcode to make the reading valid. The higher the reading 
security is (that is, the more redundancy the user selects), the slower the reading 
speed gets.  

 



  341 

 

 Appendix III  Scanner Parameters 

 

TIME-OUT 

These parameters are used to limit the maximum scanning time interval for a specific 
scan mode. 

Byte Bit Description Default Scan Engine 

21 7 - 0 Scanner time-out duration in seconds for Aiming mode, 
Laser mode, Auto Off mode, and Auto Power Off mode 

1 ~ 255 (sec): Decode time-out 

0: No time-out 

3 sec. CCD, Laser 

38 7 - 0 Scanner time-out duration in seconds for Aiming mode, 
Laser mode and Auto-off mode 

1 ~ 255 (sec): Decode time-out 

0: No time-out (= always scanning) 

3 sec. 2D, (Extra) 
Long Range 

Note: For aiming time-out duration for Aiming mode, use global variable 
AIMING_TIMEOUT. Refer to 2.1.3 System Global Variables. 

USER PREFERENCES 

Byte Bit Description Default Scan Engine 

40 7 - 6 00: Far Focus 

01: Near Focus 

10: Smart Focus 

00 8500-2D 

40 5 1: Enable Decode Aiming Pattern 

0: Disable Decode Aiming Pattern 

1 2D 

40 4 1: Enable Decode Illumination 

0: Disable Decode Illumination 

1 2D 

40 3 1: Enable Picklist Mode 

0: Disable Picklist Mode 

0 8400-2D 

Note: Picklist mode enables the decoder to decode only barcodes aligned under the 
center of the laser aiming pattern. 

40 0 1: Reader sleeps during system suspend 

0: Reader is powered off during system suspend 

0 8400-2D 

Note: If the reader is powered off during system suspend, it will save battery power. 
However, it takes about 3 seconds to restart the power after system resumes. 

 



342 

 

CipherLab C Programming Guide 

 



  343 

 

 

Through programming 8000/8300/8500 Series mobile computer, you can use cradle 
commands to control the Cradle. 

For example, 

 Call SetCommType (1, COMM_IR) to set COM1 to Serial IR communication. 

 To enable the issuing of cradle commands over COM port to the Ethernet Cradle, call 

open_com(1,BAUD_115200|DATA_BIT8|PARITY_NONE|HANDSHAKE_NONE| 
CRADLE_COMMAND); 

to enable the issuing of cradle commands over COM port to the Modem Cradle, call 

open_com(1,BAUD_57600|DATA_BIT8|PARITY_NONE|HANDSHAKE_NONE|C
RADLE_COMMAND). 

Note: (1) Unless you have changed the baud rate setting via the DIP switch onboard, 
pass the factory setting BAUD_115200 for Ethernet Cradle and BAUD_57600 for 
Modem Cradle.         
 (2) Baud rate will be reset to the DIP switch setting whenever you plug or unplug 
the RS-232 cable. 

#fOrMaT:x  Cradle Command 

Purpose To change the serial port settings of the cradle. 

Syntax write_com(int port, “#fOrMaT:x\r”); 

Parameters int port 

The IR port number of the mobile computer. 

#fOrMaT:x Meaning 

0 Set serial port mode to 8, N, 1 

1 Set serial port mode to 7, N, 2 

2 Set serial port mode to 7, O, 2 

3 Set serial port mode to 7, E, 2 
 

Example SetCommType(1,COMM_IR); 

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE| 
HANDSHAKE_NONE|CRADLE_COMMAND);  

write_com(1,“#fOrMaT:2\r”);                      // set to 7,O,2 mode 

while (!com_eot(1)); 

Return Value If successful, it returns “#DONE”. 

Remarks This cradle command is supported by firmware version 3.50 and later. 

See Also #SeRiAl 
 

Appendix IV 
CRADLE COMMANDS 



344 

 

CipherLab C Programming Guide 

 

#mOdEm  Cradle Command 

Purpose To set the working mode of cradle to MODEM mode. 

Syntax write_com(int port, “#mOdEm\r”); 

Parameters int port 

The IR port number of the mobile computer. 
 

Example SetCommType(1,COMM_IR); 

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE| 
HANDSHAKE_NONE|CRADLE_COMMAND); 

write_com(1,“#mOdEm\r”);                         // set to MODEM mode 

while (!com_eot(1)); 

Return Value If successful, it returns “#DONE”. 

Remarks After issuing the command, the baud rate of the cradle will be reset to the DIP 
switch setting. 

Note: For the Ethernet Cradle, this command “#mOdEm” actually means “to select 
Ethernet” because the modem board has been replaced by the Ethernet board. 

 

#SeRiAl  Cradle Command 

Purpose To reset the serial port settings of the cradle to defaults. 

Syntax write_com(int port, “#SeRiAl\r”); 

Parameters int port 

The IR port number of the mobile computer. 
 

Example SetCommType(1,COMM_IR); 

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE| 
HANDSHAKE_NONE|CRADLE_COMMAND); 

write_com(1,“#SeRiAl\r”);                          // set to default 

while (!com_eot(1)); 

Return Value If successful, it returns “#DONE”. 

Otherwise, it returns “#CABLE!” to indicate no RS-232 cable is detected. 

Remarks This cradle command is supported by firmware version 3.30 and later. 

It will reset the serial port settings to defaults - N, 8, 1; however, the baud 
rate depends on the current DIP switch setting (57600 bps by default). 

Note: Baud rate will be reset to the DIP switch setting whenever you plug or unplug the 
RS-232 cable. 

 



  345 

 

 Appendix IV  Cradle Commands 

 

#vErSiOn?  Cradle Command 

Purpose To retrieve the version information of the IR board. 

Syntax write_com(int port, “#vErSiOn?\r”); 

Parameters int port 

The IR port number of the mobile computer. 
 

Example SetCommType(1,COMM_IR); 

open_com(1, DATA_BIT8|BAUD_57600|PARITY_NONE| 
HANDSHAKE_NONE|CRADLE_COMMAND); 

write_com(1,“#vErSiOn?\r”);                      

while (!com_eot(1)); 

Return Value If successful, it returns the firmware version. For example, “#Ver03.20”. 

Note: There will be no response if the IR board version is no later than v3.00! 
 

UNKNOWN COMMAND 

It simply returns “#NAK”. 

 



346 

 

CipherLab C Programming Guide 

 

 

 

 



  347 

 

 

NETCONFIG & BTCONFIG 

Refer to 2.18.5 NETCONFIG Structure (802.11b/g) and 2.19.1 BTCONFIG Structure for 
related structures and functions. 

Note: Only one network interface can be used at a time: 802.11b/g or PAN. 

Index Data Type WLAN SPP DUN PAN 

1 P_LOCAL_IP unsigned char [4] 9   9 

2 P_SUBNET_MASK unsigned char [4] 9   9 

3 P_DEFAULT_GATEWAY unsigned char [4] 9   9 

4 P_DNS_SERVER unsigned char [4] 9   9 

5 P_LOCAL_NAME char [33] 9 9 9 9 

6 P_SS_ID char [33] 9    

7 P_WEPKEY_0 unsigned char [14] 9    

8 P_WEPKEY_1 unsigned char [14] 9    

9 P_WEPKEY_2 unsigned char [14] 9    

10 P_WEPKEY_3 unsigned char [14] 9    

11 P_DHCP_ENABLE int 9   9 

12 P_AUTHEN_ENABLE unsigned int 9    

13 P_WEP_LEN int 9    

14 P_SYSTEMSCALE int 9    

15 P_DEFAULTWEPKEY int 9    

16 P_DOMAINNAME char [129] Read 
only 

  Read 
only 

17 P_WEP_ENABLE unsigned int 9    

18 P_EAP_ENABLE unsigned int 9    

19 P_EAP_ID char [33] 9    

20 P_EAP_PASSWORD char [33] 9    

21 P_POWER_SAVE_ENABLE unsigned int 9    

22 P_PREAMBLE unsigned int 9    

 

Appendix V 
NET PARAMETERS BY INDEX 



348 

 

CipherLab C Programming Guide 

 

23 P_MACID unsigned char [6] Read 
only 

   

24 P_BT_MACID unsigned char [6]  Read 
only 

Read 
only 

Read 
only 

25 P_BT_REMOTE_NAME unsigned char [20]  9 9 9 

26 P_BT_SECURITY unsigned int  9 9 9 

27 P_BT_PIN_CODE unsigned char [16]  9 9 9 

28 P_BT_BROADCAST_ON unsigned int  9 9 9 

29 P_BT_POWER_SAVE_ON unsigned int  9 9 9 

30 P_ADHOC unsigned int 9    

31 P_FIRMWARE_VERSION char [4] Read 
only 

   

32 P_BT_GPRS_APNAME unsigned char [20]   9  

33 P_WPA_ENABLE 

P_WPA_PSK_ENABLE 

unsigned int 9    

34 P_WPA_PASSPHRASE unsigned char [64] 9    

35 P_BSSID unsigned char [6] Read 
only 

   

36 P_FIXED_BSSID unsigned char [6] 9    

37 P_ROAM_TXRATE_11B int 9    

38 P_ROAM_TXRATE_11G int 9    

39 P_WPA2_PSK_ENABLE unsigned int 9    

40 P_BT_FREQUENT_DEVICE1 See BTSearchInfo 
Structure 

 9 9 9 

41 P_BT_FREQUENT_DEVICE2 See BTSearchInfo 
Structure 

 9 9 9 

42 P_BT_FREQUENT_DEVICE3 See BTSearchInfo 
Structure 

 9 9 9 

43 P_BT_FREQUENT_DEVICE4 See BTSearchInfo 
Structure 

 9 9 9 

44 P_BT_FREQUENT_DEVICE5 See BTSearchInfo 
Structure 

 9 9 9 

45 P_BT_FREQUENT_DEVICE6 See BTSearchInfo 
Structure 

 9 9 9 

46 P_BT_FREQUENT_DEVICE7 See BTSearchInfo 
Structure 

 9 9 9 

47 P_BT_FREQUENT_DEVICE8 See BTSearchInfo 
Structure 

 9 9 9 

 
 
 
 



  349 

 

 Appendix V  Net Parameters by Index 

 

GSMCONFIG 

Refer to 2.20.1 GSMCONFIG Structure (GSM/GPRS) for related structures and functions. 

Index  Data Type GSM GPRS 

60 P_GSM_SERVICE_CENTER unsigned char [21] Read only  

61 P_GSM_PIN_CODE unsigned char [9] 9 9 

62 P_GPRS_AP unsigned char [21]  9 

63 P_GSM_NET unsigned char [21] Read only  

64 P_GSM_MODEM_DIAL_NUM unsigned char [21] 9  

65 P_GPRS_CHAP_ENABLE unsigned int  9 

66 P_GPRS_CHAP_PASSWORD char [33]  9 

67 P_GPRS_CHAP_USERNAME char [33]  9 

PPPCONFIG 

Refer to 2.22.2 PPPCONFIG Structure for related structures and functions. 

Index  Data Type PPP  

70 P_PPP_DIALUPPHONE unsigned char [20] 9  

71 P_PPP_LOGINNAME unsigned char [41] 9  

72 P_PPP_LOGINPASSWORD unsigned char [20] 9  

73 P_PPP_BAUDRATE int 9  

USBCONFIG 

Refer to 2.23.1 USBCONFIG Structure for related structures and functions. 

Index  Data Type USB  

80 P_USB_VCOM_BY_SN unsigned int 9  

 
 
 
 
 
 
 
 
 
 
 
 
 



350 

 

CipherLab C Programming Guide 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  351 

 

 

Refer to the following sections for related structures and functions. 

 2.18.6 NETSTATUS Structure (802.11b/g) 

 2.18.7 RADIOSTATUS Structure (802.11b/g) 

 2.19.2 BTSTATUS Structure 

 2.20.2 GSMSTATUS Structure (GSM/GPRS) 

Note: (1) Only one network interface can be used at a time: 802.11b/g or PAN. 
 (2) DUN¹ refers to Bluetooth DUN for connecting a modem.    
 (3) DUN² refers to Bluetooth DUN-GPRS for activating a mobile's GPRS. 

Index Remarks WLAN SPP DUN1 DUN2 PAN 

0 WLAN_State 9     

1 WLAN_Quality 9     

2 WLAN_Signal 9     

3 WLAN_Noise 9     

4 WLAN_Channel 9     

5 WLAN_TxRate 9     

6 NET_IPReady 

NETSTATUS 
Structure 

 

9   9 9 

7 BT_State  9 9 9 9 

8 BT_Signal 

BTSTATUS Structure 

 9 9 9 9 

Index Remarks WLAN SPP DUN1 DUN2 PAN 

14 WLAN_SNR 9     

15 WLAN_RSSI 9     

16 WLAN_NOISEFLOOR 

RADIOSTATUS 
Structure 

 
9     

Note: For 8000/8300/8400 with 802.11b/g module, we suggest using indexes 14~16 
instead of indexes 2~4. 

Index Remarks GSM GPRS 

11 GSM_State 9 9 

12 GSM_RSSIQuality 

GSMSTATUS Structure 

 9 9 

13 GSM_PINstate  9 9 

 
 

Appendix VI 
NET STATUS BY INDEX 



352 

 

CipherLab C Programming Guide 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  353 

 

 

WLAN EXAMPLE (802.11b/g) 

Configure Network Parameters 

Generally, network configuration has to be done in advance by calling GetNetParameter() and 
SetNetParameter(). 

Initialize Networking Protocol Stack & Wireless Module 

The wireless module, such as of 802.11b/g, Bluetooth or GSM/GPRS, will not be powered until 
NetInit() is called. 

Mobile 
Computer 

WLAN 

(802.11b/g) 

Bluetooth  

PAN 

GPRS Bluetooth  

DUN-GPRS 

PPP via RS-232 

8062 --- NetInit() --- NetInit(3L) --- 

8071 NetInit() --- --- --- --- 

8330 NetInit() 

NetInit(0L) 

NetInit(1L) --- NetInit(3L) NetInit(5L) 

8362 --- NetInit() --- NetInit(3L) NetInit(5L) 

8370 NetInit() --- --- --- NetInit(5L) 

8400 --- --- --- NetInit(3L) NetInit(5L) 

8470 NetInit() 

NetInit(0L) 

--- --- NetInit(3L) NetInit(5L) 

8500 --- NetInit(1L) --- NetInit(3L) --- 

8570 NetInit() 

NetInit(0L) 

NetInit(1L) --- NetInit(3L) --- 

8580 --- NetInit(1L) NetInit(2L) NetInit(3L) --- 

8590 NetInit() 

NetInit(0L) 

NetInit(1L) NetInit(2L) NetInit(3L) --- 

 

Note: (1) For the use of Modem Cradle, use NetInit(4L) for PPP via IR or direct connect.
 (2) For the use of Ethernet Cradle, use NetInit(6L) for Ethernet via IR or direct 
connect.  

 

 

 

Appendix VII 
EXAMPLES 



354 

 

CipherLab C Programming Guide 

 

Check Network Status 

Once the initialization process is done, the network status can be retrieved from the system. It 
will be periodically updated by the system. The application program must explicitly call 
CheckNetStatus() to get the latest status. 

Open Connection 

Before reading and writing to the remote host, a connection must be established (opened). Call 
Nopen() to open a connection. For example, 

conno = Nopen(“*”,“TCP/IP”,2000,0,0); 

Transmit Data 

socket_cansend() 

Before sending data to the network, call socket_cansend() to check if there is enough buffer 
size to write out the data immediately. It also can be used to check if the data being sent is 
more than 4 packets when there is no response from the remote host. Then, call Nwrite() to 
send data on the network. 

socket_hasdata() 

Before receiving data from the network, call socket_hasdata() to check if there is data in the 
buffer. Then, call Nread() to receive data on the network. 

 

Note: In case of an abnormal break during PPP, DUN-GPRS, or GPRS connection, 
CheckNetStatus(IPReady) will return -1. 

Other Useful Functions… 

Refer to 2.17.4 Supplemental Functions. 

Close Connection 

Call Nclose() to terminate a particular connection, which equals to conno returned by Nopen(), 
when the application program does not use it any more. 

Terminate Networking Protocol Stack & Wireless Module 

When the application program wishes to stop using the network, call NetClose() to terminate 
networking and shut down the power to the module so that it can save power. To enable the 
network again, it is necessary to call NetInit() again. 

Note: After calling NetClose(), any previous network connection and data will be lost. 

 

 

 

 
 



  355 

 

 Appendix VII  Examples 

 

WPA ENABLED FOR SECURITY 

If WPA-PSK/WPA2-PSK is enabled for security, SSID and Passphrase will be processed to 
generate a pre-share key. If you change SSID or Passphrase, it will have to re-generate 
a pre-share key.   

1) For initial association with an access point, you will see an antenna icon developing 
on the screen to indicate that the mobile computer is processing a pre-share key.  

  

2) After having generated the pre-share key, the mobile computer proceeds to establish 
a connection with an access point, and you will see the whole antenna is flashing.  

3) When the mobile computer has been connected to the access point successfully, you 
will see the whole antenna and the indication of wireless signal strength. 

Note: Be aware that these icons will appear on the device screen after NetInit() is called. 
(WPA-PSK/WPA2-PSK must be enabled first!) 

 

 

 

 

 

 

 

 

 
 
 
 



356 

 

CipherLab C Programming Guide 

 

BLUETOOTH EXAMPLES 

SPP 

Set Communications Type 

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication. 

Open COM Port 

Call open_com (2, BT_SERIALPORT_MASTER) to initialize Bluetooth SPP Master. 

Or call open_com (2, BT_SERIALPORT_SLAVE) to initialize Bluetooth SPP Slave. 

Check Connection 

Call com_eot (2) to detect if the connection is completed. For example, 

while (1) { 

    if (com_eot(2)) break; 

    OSTimeDly(4); 

} 

Transmit/receive Data 

Call write_com() and read_com() to transmit and receive data respectively. 

Check Connection 

Call com_eot(2) to detect if the connection is broken. For example, 

if (com_eot(2)) printf(“Connection break”); 

Close COM Port 

Call close_com (2) to terminate communication and shut down the Bluetooth module. 

 

 

 



  357 

 

 Appendix VII  Examples 

 

WEDGE EMULATOR VIA SPP 

Refer to the Wedge Options table and 2.4.3 Wedge Emulator. 

Sample Code 

=========================================================================== 

For this purpose, the application should call these functions in the beginning: 

#include <8300lib.h> 

#include <ucos.h> 

static const int beep[] = {32,5,0,0}; 
 

main() 

{ 

SetCommType(2,COMM_RF);              /* Add WEDGE_EMULATOR flag to open_com */ 

open_com(2,BT_SERIALPORT_SLAVE|WEDGE_EMULATOR); 

clr_scr(); 

gotoxy(0,0); printf(“    Virtual Wedge    ”); 

gotoxy(0,1); printf(“====================”); 

gotoxy(0,2); printf(“         Wait          ”); 

gotoxy(0,3); printf(“     Connecting...   ”); 

gotoxy(0,4); printf(“====================”); 

while (1) { 

    if (WedgeReady()) break; 

    OSTimeDly(4); 

} 

clr_scr(); 

gotoxy(0,0); printf(“    Virtual Wedge    ”); 

gotoxy(0,1); printf(“====================”); 

gotoxy(0,2); printf(“         Ready         ”); 

gotoxy(0,3); printf(“Press a key to start”); 

 

gotoxy(0,4); printf(“====================”); 

 



358 

 

CipherLab C Programming Guide 

 

on_beeper(beep); 

while (!getchar()) OSTimeDly(4); 

while (1) { 

    if (getchar()) 

    SendData(“1234567890abcdefghijklmnopqrstuvwxyz”); 

OSTimeDly(4); 

} 

} 

 

 

 

 

 

 

 

 

 

 

 

 
 



  359 

 

 Appendix VII  Examples 

 

HID 

Configure Wedge Settings 

Bluetooth HID makes use of the WedgeSetting array to govern the HID operations. Refer to the 
Wedge Options Table. 

Subscript Bit Description 

0 7 - 0 KBD / Terminal Type 

1 7 1: Enable capital lock auto-detection 

0: Disable capital lock auto-detection 

1 6 1: Capital lock on 

0: Capital lock off 

1 5 1: Ignore alphabets' case 

0: Alphabets are case-sensitive 

1 4 - 3 00: Normal 

10: Digits at lower position 

11: Digits at upper position 

1 2 - 1 00: Normal 

10: Capital lock keyboard 

11: Shift lock keyboard 

1 0 1: Use numeric keypad to transmit digits 

0: Use alpha-numeric key to transmit digits 

2 0 HID Character Transmit Mode 

1: By character 

0: Batch processing 

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the 
possible value is listed below. 

Setting Value Terminal Type Setting Value Terminal Type 

0 Null (Data Not Transmitted) 7 PCAT (UK) 

1 PCAT (US) 8 PCAT (BE) 

2 PCAT (FR) 9 PCAT (SP) 

3 PCAT (GR) 10 PCAT (PO) 

4 PCAT (IT) 11 IBM A01-02 (Japanese OADG109) 

5 PCAT (SV) 12 PCAT (Turkish) 

6 PCAT (NO)   

WedgeSetting[1]: For details, refer to 2.4 Keyboard Wedge. 

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or 
batch processing. 
 



360 

 

CipherLab C Programming Guide 

 

Set Communications Type 

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication. 

Open COM Port 

Call open_com (2, BT_HID_DEVICE) to initialize Bluetooth HID functionality. 

Check Connection 

Call com_eot (2) to detect if the connection is completed. For example, 

while (1) { 

    if (com_eot(2)) break; 

    OSTimeDly(4); 

} 

Frequent Device List 

When there is a host device recorded in the Frequent Device List, the mobile computer (as SPP 
Master) will automatically connect to it. If the connection fails, the mobile computer will try again. 
If it fails for the second time, the mobile computer will wait 7 seconds for another host to initiate 
a connection. If still no connection is established, the mobile computer will repeat the above 
operation.  

When there is no device recorded in the Frequent Device List, the mobile computer (as SPP Slave) 
simply must wait for a host device (as SPP Master) to initiate a connection. 
 

Note: As an HID input device (keyboard), the mobile computer must wait for a host to 
initiate a connection. Once the HID connection is established, the host device will 
be recorded in the Frequent Device List identified as HID Connection. 

 
 

Transmit Data 

Call write_com(2, *data) or nwrite_com(2, *data, len) to transmit data. 

Check Connection 

Call com_eot(2) to detect if the connection is broken. For example, 

if (com_eot(2)) printf(“Connection break”); 

Close COM Port 

Call close_com (2) to terminate communication and shut down the Bluetooth module. 
 
 



  361 

 

 Appendix VII  Examples 

 

DUN 

Set Communications Type 

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication. 

Open COM Port 

Call open_com (2, BT_DIALUP_NETWORKING) to initialize Bluetooth DUN functionality. 

Check Connection 

Call com_eot (2) to detect if the connection is completed. For example, 

while (1) { 

    if (com_eot(2)) break; 

    OSTimeDly(4); 

} 

Transmit/receive Data 

Call write_com() and read_com() to transmit and receive data respectively. 

Check Connection 

Call com_eot(2) to detect if the connection is broken. For example, 

if (com_eot(2)) printf(“Connection break”); 

Close COM Port 

Call close_com (2) to terminate communication and shut down the Bluetooth module. 
 

PAN 

Follow the same programming flow of WLAN Example (802.11b/g). 

Note: Only one wireless network interface can be used at a time: 802.11b/g or PAN. 
 

DUN-GPRS 

To activate the GPRS functionality on a mobile phone via the built-in Bluetooth dial-up 
networking technology, follow the same programming flow of WLAN Example 
(802.11b/g). 

 Before calling NetInit (BT_GPRS_NETWORKING), the following parameters of 
DUN-GPRS must be specified. 

Index Default Description 

32 P_ BT_GPRS_APNAME [20] Null Name of Access Point for Bluetooth 
DUN-GPRS 

 
 



362 

 

CipherLab C Programming Guide 

 

GSM/GPRS EXAMPLES 

GPRS 

To establish a connection to the content server connected to the internet, follow the 
same programming flow of WLAN Example (802.11b/g). Only client-initiated connection 
is supported.  

Connecting Mobile Computer 

Before calling NetInit (GPRS_NETWORKING), the following parameters of GPRS must be 
specified. 

Index Default Description 

61 P_ GSM_PIN_CODE [9] Null PIN Code for GSM/GPRS 

62 P_ GPRS_AP [21] Null Name of Access Point for GPRS 
 

Connecting 8400 GPRS Cradle (Transparent Mode) 

Before calling NetInit (GPRS_CRADLE_NETWORKING), use AT commands to configure PIN 
code and GPRS AP name.  

 If CHAP is enabled, you must configure the settings from the mobile computer. 

 It fails to initialize a connection in the following conditions: (1) PIN code and GPRS AP name 
are not configured correctly via AT commands, and (2) CHAP settings are not configured 
correctly on 8400. 

Note: A client-initiated connection occurs when the connection is established in response 
to a request from the client. 

 

 

 

 

 

 

 

 

 

 

 



  363 

 

 Appendix VII  Examples 

 

GSM 

Configure Parameters 

Call SetNetParameter() to set variables, such as PINCode[], ModemDialNum[], and so on. 

It is recommended that the correct PIN code should be initialized before opening the GSM port. 
This is because the PIN code will be taken as a password to activate the SIM card. Therefore, any 
input of incorrect PIN code during initialization will result in wasting one attempt of PIN entry. If 
you fail the PIN entry three times, the procedure of PIN code entry will be locked.  

Set Communications Type 

Call SetCommType (3, COMM_SMS) to set COM3 for SMS.  

Or call SetCommType (3, COMM_GSMMODEM) to set COM3 for data call. 

Open COM Port 

Call open_com (3, setting) to initialize the GSM/GPRS module, where the setting parameter is of 
no use. The initialization takes about 10 seconds.  

An antenna icon representing the GSM(GSM_SMS only)/GPRS operation will be displayed, and it 
keeps flashing until the open_com() procedure is completed. Once the procedure is completed, 
the signal strength bar will be displayed next to the antenna icon, and it will be updated every five 
seconds. The level of the signal strength bar ranges from 0 to 5. 

 The value of the PIN code will be fetched as a password required for initializing the operation. 

 Refer to 2.20.4 PIN Procedure and 2.20.5 PUK Procedure for handling PINCode[] errors. New 
PIN code re-entry and PUK unblock operation are furnished. 

 Once the PIN code check is passed, PINCode[] will be updated with the input value.  

 After open_com (3, setting) is completed, relevant information will be obtained, such as 
SMServiceCenter[], NET[], and PINstatus. 

 

 

Note: For GSM_Modem, refer to GSMModemGetRSSI(). When GSMModemGetRSSI() is 
called first, CheckNetStatus(GSM_RSSIQuality) will become available. 

 

 

 



364 

 

CipherLab C Programming Guide 

 

Check Connection 

Call com_eot(3) to detect if the initialization is completed. For example, 

while (1) { 

    if (com_eot(3)) break; 

    OSTimeDly(4); 

} 

Such checking must be carried out to ensure the initialization of the GSM/GPRS module has been 
completed. com_eot (3) will return 1 if the initialization is completed. 

Note: The POWER key will be disabled during the connection process. Yet, the [ESC] key 
is provided for being able to abort the PIN code check while connecting; however, 
com_eot (3) will never return 1. A countermeasure, such as a time-out check, is 
recommended to prevent from waiting infinitely. 

Transmit/receive Data 

Call nwrite_com(3, *buf, len) and read_com(3, *buf) to transmit and receive data 
respectively. For example, 

nwrite_com(3,(void*)buf,len); 

while (!com_eot(3)) OSTimeDly(4); 

  : 

(use GSM) 

OR 

fd = open(“DAT”); 

  : 

while (read_com(3,(char*)c)) 

{ 

append(fd,(void*)&c,1); 

} 

  : 

Check Transmission 

Call com_eot(3) to detect if the transmission is completed for writing COM port. For example, 

if (com_eot(3)) printf(“Write_Com Complete”); 

Close COM Port 

Call close_com (3) to terminate communication and shut down the GSM/GPRS module. 

 

 

 
 



  365 

 

 Appendix VII  Examples 

 

ACOUSTIC COUPLER EXAMPLE 

Set Communications Type 

Call SetCommType (2, COMM_ACOUSTIC) to set COM2 for Acoustic Coupler communication. 

Open COM Port 

Call open_com() to set the connection to Modem mode or DTMF mode and configure related 
parameters. 

Transmit Data 

Call nwrite_com() and write_com() to transmit data in Modem mode or to dial out to the 
remote computer in DTMF mode. 

Check Transmission 

Call com_eot(2) to check whether there is any transmission in progress. For example, 

while (!com_eot(2));                          // wait till prior transmission completed

write_com(2,“NEXT STRING”); 

Close COM Port 

Call close_com (2) to terminate communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



366 

 

CipherLab C Programming Guide 

 

USB EXAMPLE 

USB VIRTUAL COM 

Set Communications Type 

Call SetCommType (5, COMM_USBVCOM) to set COM5 for USB Virtual COM communication. 

Open COM Port 

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use. 

Check Connection 

Call com_eot (5) to detect if the connection is completed. For example, 

while (1) { 

    if (com_eot(5)) break; 

    OSTimeDly(4); 

} 

Transmit/receive Data 

Call write_com() and read_com() to transmit and receive data respectively. 

Check Transmission 

Call com_eot(5) to check whether there is any transmission in progress. For example, 

while (!com_eot(5));                          // wait till prior transmission completed 

Close COM Port 

Call close_com (5) to terminate USB communication. 

 

 

 

 

 

 

 

 

 

 



  367 

 

 Appendix VII  Examples 

 

USB HID 

Configure Wedge Settings 

Like Bluetooth HID, USB HID also makes use of the WedgeSetting array to govern the HID 
operations. Refer to the Wedge Options Table. 

Subscript Bit Description 

0 7 - 0 KBD / Terminal Type 

1 7 1: Enable capital lock auto-detection 

0: Disable capital lock auto-detection 

1 6 1: Capital lock on 

0: Capital lock off 

1 5 1: Ignore alphabets' case 

0: Alphabets are case-sensitive 

1 4 - 3 00: Normal 

10: Digits at lower position 

11: Digits at upper position 

1 2 - 1 00: Normal 

10: Capital lock keyboard 

11: Shift lock keyboard 

1 0 1: Use numeric keypad to transmit digits 

0: Use alpha-numeric key to transmit digits 

2 0 HID Character Transmit Mode 

1: By character 

0: Batch processing 

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the 
possible value is listed below. 

Setting Value Terminal Type Setting Value Terminal Type 

0 Null (Data Not Transmitted) 7 PCAT (UK) 

1 PCAT (US) 8 PCAT (BE) 

2 PCAT (FR) 9 PCAT (SP) 

3 PCAT (GR) 10 PCAT (PO) 

4 PCAT (IT) 11 IBM A01-02 (Japanese OADG109) 

5 PCAT (SV) 12 PCAT (Turkish) 

6 PCAT (NO)   

WedgeSetting[1]: For details, refer to 2.4 Keyboard Wedge. 

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or 
batch processing. 



368 

 

CipherLab C Programming Guide 

 

Set Communications Type 

Call SetCommType (5, COMM_USBHID) to set COM5 for USB HID communication. 

Open COM Port 

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use. 

Check Connection 

Call com_eot (5) to detect if the connection is completed. For example, 

while (1) { 

    if (com_eot(5)) break; 

    OSTimeDly(4); 

} 

Transmit Data 

Call write_com(5, *data) or nwrite_com(5, *data, len) to transmit data. 

Check Transmission 

Call com_eot(5) to check whether there is any transmission in progress. For example, 

while (!com_eot(5));                          // wait till prior transmission completed 

Close COM Port 

Call close_com (5) to terminate USB communication. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  369 

 

 Appendix VII  Examples 

 

USB MASS STORAGE DEVICE 

Set Communications Type 

Call SetCommType (5, COMM_USBDISK) to set COM5 for the use of USB removable disk. 

Open COM Port 

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use. 

Close COM Port 

Call close_com (5) to terminate USB communication. 

 

 

 
 



370 

 

CipherLab C Programming Guide 

 

 
 
 
 
 



 

 

# 
#fOrMaT • 343 
#mOdEm • 344 
#SeRiAl • 344 
#vErSiOn? • 345 

_ 
_KeepAlive__ • 18 

A 
accept • 173 
access • 122 
ActivateProgram • 34 
add_member • 135 
AIMING_TIMEOUT • 22 
append • 125 
appendln • 126 
AUTO_OFF • 22 

B 
BC_X • 23 
BC_Y • 23 
beeper_status • 65 
bind • 174 
BKLIT_TIMEOUT • 22 
BTInquiryDevice • 227 
BTPairingTest • 228 
BTPairingTestMenu • 229 

C 
ChangeSpeed • 18 
charger_status • 74 
CheckFont • 111 
CheckKey • 76 
CheckNetStatus • 207 
CheckPasswordActive • 30 
CheckSysPassword • 30 
CheckWakeUp • 18 
chmod • 259 
chmodfp • 260 
chsize • 126 
circle • 103 
clear_com • 161 
clearerr • 279 
close • 127 
close_com • 161 
close_DBF • 136 

closesocket • 175 
clr_eol • 99 
clr_icon • 99 
clr_kb • 77 
clr_rect • 99 
clr_scr • 100 
CodeBuf • 45 
CodeLen • 45 
CodeType • 45 
com_cts • 160 
com_eot • 161 
com_overrun • 161 
com_rts • 160 
Configure_Reader • 46 
connect • 176 
create_DBF • 137 
create_index • 138 

D 
DayOfWeek • 70 
DecContrast • 88 
Decode • 46 
delete_member • 139 
delete_top • 127 
delete_topln • 128 
DeleteBank • 34 
DeviceType • 25 
dis_alpha • 80 
DNS_resolver • 193 
DownLoadPage • 40 
DownLoadProgram • 35 

E 
en_alpha • 80 
eof • 129 
EraseSector • 116 

F 
fclose • 261 
fclosedir • 261 
fcntlsocket • 177 
fcopy • 262, 275 
feof • 262 
ferror • 280 
fflush • 263 
fformat • 263 
ffreebyte • 119 
fgetc • 264 

INDEX 



 

CipherLab C Programming Guide 

 

fgetinfo • 265 
fgetpos • 265 
fgets • 266 
filelength • 129 
filelist • 122 
fill_rect • 95 
FlashSize • 116 
FontVersion • 26 
fopen • 267 
fopendir • 268 
fputc • 268 
fputs • 269 
fread • 270 
freaddir • 271 
free_memory • 118 
fremove • 271 
frename • 272 
FreqDevListMenu • 229 
fscan • 272 
fseek • 273 
fsetpos • 274 
fsize • 119 
ftell • 274 
fwrite • 275 

G 
get_alpha_enable_state • 81 
get_alpha_lock_state • 81 
get_beeper_vol • 65 
get_file_number • 123 
get_image • 102 
get_member • 140 
get_shift_lock_state • 83 
get_time • 70 
get_vbackup • 73 
get_vmain • 73 
GetAlarm • 72 
GetAltKeyState • 84 
GetBTConfig • 224 
GetBTStatus • 225 
getchar • 77 
GetContrast • 88 
GetCursor • 93 
GetFont • 112 
GetFuncExtKey • 87 
GetFuncToggle • 85 
GetHeaterMode • 69 
gethostbyname • 177 
GetIOPinStatus • 19 
GetKBDModifierStatus • 77 
GetKeyClick • 78 
GetMassStorageStatus • 277 
GetMenuPauseTime • 44 
GetNetConfig • 213 
GetNetParameter • 201 

GetNetStatus • 217 
getpeername • 178 
GetPoint • 107 
GetRFIDSecurityKey • 56 
GetRFmode • 27 
GetScreenItem • 107 
getsockname • 179 
getsockopt • 180 
GetTouchScreenState • 108 
GetUSBChargeCurrent • 75 
GetVibrator • 68 
GetVideoMode • 89 
gotoxy • 93 
GSMChangePINCode • 239 
GSMCheckPINCode • 239 
GSMModemGetRSSI • 241 
GSMSetPINCodeLock • 240 

H 
HaltScanner1 • 47 
HaltTouchScreen • 108 
HardwareVersion • 27 
has_member • 141 
htonl • 191 
htons • 191 

I 
ICON_ZONE • 95 
IncContrast • 89 
inet_addr • 181 
inet_ntoa • 181 
init_free_memory • 118 
InitScanner1 • 47 
InitTouchScreen • 108 
InputPassword • 30 
ioctlsocket • 182 
IrDA_Timeout • 23 

K 
kbhit • 78 
KernelVersion • 27 
KEY_CLICK • 23 
KeypadLayout • 27 

L 
lcd_backlit • 89 
LibraryVersion • 28 
line • 104 
listen • 182 
LoadProgram • 36 
LockAlphaState • 82 
lseek • 129 
lseek_DBF • 142 



 

 Index 

 

M 
ManufactureDate • 28 
member_in_DBF • 143 
mkdir • 276 

N 
Nclose • 167 
NetClose • 206 
NetInit • 205 
NetVersion • 28, 29 
Nopen • 168 
Nportno • 193 
Nread • 169 
ntohl • 191 
ntohs • 192 
Nwrite • 170 
nwrite_com • 162, 245 

O 
off_beeper • 65 
on_beeper • 65 
open • 130 
open_com • 162, 244 
open_DBF • 144 
OriginalSerialNumber • 28 
OS_ENTER_CRITICAL • 287 
OS_EXIT_CRITICAL • 288 
OSSemCreate • 288 
OSSemPend • 289 
OSSemPost • 290 
OSTaskCreate • 291 
OSTaskDel • 292 
OSTimeDly • 292 

P 
play • 65 
POWER_ON • 22 
prc_menu • 42 
printf • 96 
ProgramInfo • 36 
ProgramManager • 37 
ProgVersion • 24 
putch • 79 
putchar • 97 
putpixel • 104 
puts • 98 

R 
RamSize • 118 
RAMtoSD_DAT • 150 
RAMtoSD_DBF • 154 
read • 131 
read_com • 164 
read_error_code • 123 

readln • 131 
rebuild_index • 145 
rectangle • 104 
recv • 183 
recvfrom • 184 
remove • 123 
remove_index • 146 
rename • 124 
RFIDReadFormat • 55 
RFIDVersion • 29 
RFIDWriteFormat • 55 
rmdir • 276 

S 
SaveSysPassword • 31 
ScannerDesTbl • 45 
SDtoRAM_DAT • 152 
SDtoRAM_DBF • 156 
select • 185 
send • 186 
SendData • 58 
sendto • 187 
SerialNumber • 29 
set_alpha_lock • 82 
set_beeper_vol • 66 
set_led • 67 
set_shift_lock • 83 
set_time • 71 
SetACTone • 245 
SetAlarm • 72 
SetAltKey • 84 
SetBklitControl • 90 
SetBTConfig • 224 
SetCommType • 165 
SetContrast • 91 
SetContrastControl • 91 
SetCursor • 94 
SetFont • 112 
SetFuncExtKey • 87 
SetFuncToggle • 86 
SetHeaterMode • 69 
SetKeyClick • 79 
SetLanguage • 113 
SetMenuPauseTime • 44 
SetNetConfig • 214 
SetNetParameter • 202 
SetPwrKey • 20 
SetRFIDSecurityKey • 56 
setsockopt • 187 
SetUSBChargeCurrent • 75 
SetVibrator • 68 
SetVideoMode • 92 
show_image • 102 
shut_down • 20 
shutdown • 189 



 

CipherLab C Programming Guide 

 

SignatureCapture • 108 
socket • 189 
socket_block • 193 
socket_cansend • 194 
socket_fin • 194 
socket_hasdata • 194 
socket_ipaddr • 195 
socket_isopen • 195 
socket_keepalive • 195 
socket_noblock • 196 
socket_push • 196 
socket_rxstat • 196 
socket_rxtout • 197 
socket_state • 197 
socket_testfin • 197 
socket_txstat • 198 
sys_msec • 22 
sys_sec • 22 
SysSuspend • 20 
system_restart • 20 

T 
tell • 132 
tell_DBF • 147 
TriggerStatus • 79 

U 
UnpackDBF • 148 
update_member • 149 
UpdateBank • 37 
UpdateKernel • 39 
UpdateUser • 38 

W 
WaitHourglass • 98 
WakeUp_Event_Mask • 23 
WedgeReady • 58 
WEDGESETTING • 58 
wherex • 94 
wherexy • 94 
wherey • 94 
write • 133 
write_com • 166, 246 
WriteFlash • 117 
writeln • 134 
 
 


	RELEASE NOTES
	INTRODUCTION
	DEVELOPMENT ENVIRONMENT
	1.1 DIRECTORY STRUCTURE & VARIABLES
	1.1.1 DIRECTORY STRUCTURE
	1.1.2 ENVIRONMENT VARIABLES

	1.2 DEVELOPMENT FLOW
	1.2.1 CREATE YOUR OWN C SOURCE PROGRAM
	1.2.2 COMPILE
	1.2.3 LINK
	1.2.4 FORMAT CONVERSION
	1.2.5 DOWNLOAD PROGRAM TO FLASH MEMORY

	1.3 C COMPILER
	1.3.1 SIZE OF TYPES
	1.3.2 REPRESENTATION RANGE OF INTEGERS
	1.3.3 FLOATING TYPES
	1.3.4 ALIGNMENT
	1.3.5 REGISTER AND INTERRUPT HANDLING
	1.3.6 RESERVED WORDS
	1.3.7 EXTENDED RESERVED WORDS
	1.3.8 BIT-FIELD USAGE


	MOBILE-SPECIFIC FUNCTION LIBRARY
	2.1 SYSTEM
	2.1.1 GENERAL
	2.1.2 POWER ON RESET (POR)
	2.1.3 SYSTEM GLOBAL VARIABLES
	2.1.4 SYSTEM INFORMATION
	2.1.5 SECURITY
	2.1.6 PROGRAM MANAGER
	2.1.7 DOWNLOAD MODE
	2.1.8 MENU DESIGN

	2.2 BARCODE READER
	2.2.1 BARCODE DECODING
	2.2.2 CODE TYPE
	2.2.3 SCANNER DESCRIPTION TABLE

	2.3 RFID READER
	2.3.1 VIRTUAL COM
	2.3.2 RFIDPARAMETER STRUCTURE
	2.3.3 RFID DATA FORMAT
	2.3.4 RFID AUTHENTICATION

	2.4 KEYBOARD WEDGE
	2.4.1 DEFINITION OF THE WEDGESETTING ARRAY
	2.4.2 COMPOSITION OF OUTPUT STRING
	2.4.3 WEDGE EMULATOR

	2.5 BUZZER
	2.5.1 BEEP SEQUENCE
	2.5.2 BEEP FREQUENCY
	2.5.3 BEEP DURATION

	2.6 LED INDICATOR
	2.7 VIBRATOR & HEATER
	2.7.1 VIBRATOR
	2.7.2 HEATER

	2.8 REAL-TIME CLOCK
	2.8.1 CALENDAR
	2.8.2 ALARM

	2.9 BATTERY & CHARGING
	2.9.1 BATTERY VOLTAGE
	2.9.2 CHARGING STATUS

	2.10 KEYPAD
	2.10.1 GENERAL
	2.10.2 ALPHA KEY
	2.10.3 SHIFT KEY
	2.10.4 ALT KEY
	2.10.5 FN KEY

	2.11 LCD
	2.11.1 PROPERTIES
	2.11.2 CURSOR
	2.11.3 DISPLAY
	2.11.4 CLEAR
	2.11.5 IMAGE
	2.11.6 GRAPHICS

	2.12 TOUCH SCREEN
	2.12.1 ITEMPROPERTY STRUCTURE
	2.12.2 EXAMPLE

	2.13 FONTS
	2.13.1 FONT SIZE
	2.13.2 DISPLAY CAPABILITY
	2.13.3 MULTI-LANGUAGE FONT
	2.13.4 SPECIAL FONTS
	2.13.5 FONT FILES

	2.14 MEMORY
	2.14.1 FLASH
	2.14.2 SRAM
	2.14.3 SD CARD

	2.15 FILE MANIPULATION
	2.15.1 FILE SYSTEM
	2.15.2 DIRECTORY
	2.15.3 FILE NAME
	2.15.4 FILE HANDLE (FILE DESCRIPTOR)
	2.15.5 ERROR CODE
	2.15.6 DAT FILES
	2.15.7 DBF FILES AND IDX FILES
	2.15.8 FILE TRANSFER VIA SD CARD

	2.16 COM PORTS
	2.16.1 PORT MAPPING
	2.16.2 RECEIVE & TRANSMIT BUFFERS
	2.16.3 FLOW CONTROL

	2.17 TCP/IP COMMUNICATIONS
	2.17.1 NATIVE PROGRAMMING INTERFACE
	2.17.2 SOCKET PROGRAMMING INTERFACE
	2.17.3 BYTE SWAPPING
	2.17.4 SUPPLEMENTAL FUNCTIONS

	2.18 WIRELESS NETWORKING
	2.18.1 NETWORK CONFIGURATION
	2.18.2 INITIALIZATION & TERMINATION
	2.18.3 NETWORK STATUS
	2.18.4 IEEE 802.11 b/g
	2.18.5 NETCONFIG STRUCTURE (802.11b/g)
	2.18.6 NETSTATUS STRUCTURE (802.11b/g)
	2.18.7 RADIOSTATUS STRUCTURE (802.11b/g)

	2.19 BLUETOOTH
	2.19.1 BTCONFIG STRUCTURE
	2.19.2 BTSTATUS STRUCTURE
	2.19.3 FREQUENT DEVICE LIST
	2.19.4 INQUIRY
	2.19.5 PAIRING
	2.19.6 USEFUL FUNCTION CALL

	2.20 GSM/GPRS
	2.20.1 GSMCONFIG STRUCTURE (GSM/GPRS)
	2.20.2 GSMSTATUS STRUCTURE (GSM/GPRS)
	2.20.3 SECURITY
	2.20.4 PIN PROCEDURE
	2.20.5 PUK PROCEDURE
	2.20.6 GSM PROGRAMMING FLOW
	2.20.7 GSM SIGNAL QUALITY (RSSI)

	2.21 ACOUSTIC COUPLER
	2.21.1 MODEM MODE
	2.21.2 DTMF MODE

	2.22 MODEM, ETHERNET & GPRS CONNECTION
	2.22.1 PPP VIA MODEM CRADLE/RS-232
	2.22.2 PPPCONFIG STRUCTURE
	2.22.3 ETHERNET VIA CRADLE
	2.22.4 GPRS VIA CRADLE & GSMCONFIG STRUCTURE

	2.23 USB CONNECTION
	2.23.1 USBCONFIG STRUCTURE

	2.24 SD CARD
	2.24.1 FILE SYSTEM
	2.24.2 DIRECTORY
	2.24.3 FILE NAME
	2.24.4 FILEINFO STRUCTURE
	2.24.5 SD CARD MANIPULATION
	2.24.6 MASS STORAGE DEVICE
	2.24.7 ERROR CODE


	STANDARD LIBRARY ROUTINES
	3.1 INPUT & OUTPUT: <STDIO.H>
	3.2 CHARACTER CLASS TESTS: <CTYPE.H>
	3.3 STRING FUNCTIONS: <STRING.H>
	3.3.1 FUNCTIONS START WITH “STR”
	3.3.2 FUNCTIONS START WITH “MEM”

	3.4 MATHEMATICAL FUNCTIONS: <MATH.H>
	3.5 UTILITY FUNCTIONS: <STDLIB.H>
	3.5.1 NUMBER CONVERSION
	3.5.2 STORAGE ALLOCATION

	3.6 DIAGNOSTICS: <ASSERT.H>
	3.7 VARIABLE ARGUMENT LISTS: <STDARG.H>
	3.8 NON-LOCAL JUMPS: <SETJMP.H>
	3.9 SIGNALS: <SIGNAL.H>
	3.10 TIME & DATE FUNCTIONS: <TIME.H>
	3.11 IMPLEMENTATION-DEFINED LIMITS: <LIMITS.H>, <FLOAT.H>

	REAL-TIME KERNEL
	SCANNERDESTBL ARRAY
	SYMBOLOGY PARAMETER TABLE I
	SYMBOLOGY PARAMETER TABLE II

	SYMBOLOGY PARAMETERS
	SCAN ENGINE, CCD OR LASER
	CODABAR
	CODE 2 OF 5 FAMILY
	CODE 39
	CODE 93
	CODE 128/EAN-128/ISBT 128
	ITALIAN/FRENCH PHARMACODE
	MSI
	NEGATIVE BARCODE
	PLESSEY
	RSS FAMILY
	TELEPEN
	UPC/EAN FAMILIES

	SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER
	CODABAR
	CODE 2 OF 5
	CODE 39
	CODE 93
	CODE 128
	MSI
	RSS FAMILY
	UPC/EAN FAMILIES
	UCC COUPON CODE
	JOINT CONFIGURATION
	CODE 11

	2D SCAN ENGINE ONLY
	1D SYMBOLOGIES
	COMPOSITE CODES
	2D SYMBOLOGIES


	SCANNER PARAMETERS
	SCAN MODE
	COMPARISON TABLE

	READ REDUNDANCY
	TIME-OUT
	USER PREFERENCES

	CRADLE COMMANDS
	NET PARAMETERS BY INDEX
	NETCONFIG & BTCONFIG
	GSMCONFIG
	PPPCONFIG
	USBCONFIG

	NET STATUS BY INDEX
	EXAMPLES
	WLAN EXAMPLE (802.11b/g)
	WPA ENABLED FOR SECURITY

	BLUETOOTH EXAMPLES
	SPP
	WEDGE EMULATOR VIA SPP
	HID
	DUN
	PAN
	DUN-GPRS

	GSM/GPRS EXAMPLES
	GPRS
	GSM

	ACOUSTIC COUPLER EXAMPLE
	USB EXAMPLE
	USB VIRTUAL COM
	USB HID
	USB MASS STORAGE DEVICE


	INDEX


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


